摘要
随着中国城市机动车保有量的急剧增多,交通拥堵已经成为现代城市病。交通拥堵在道路网络中呈现向四周放射的传导特性,拥堵路段倾向于将拥堵扩散传导到其他相邻路段,该特性此前未被系统研究过,综合比较各种方法的适用性,从时间和大数据规则挖掘角度对拥堵建模;使用时间序列规则挖掘算法建立交通拥堵传导规律模型,并基于传导规则预测未来交通流状况;更重要的是,挖掘出来的拥堵传导规则直观可用,能够用于建立拥堵预警防治机制,完善道路路网建设规划中不合理的部分,从而达到提升交通效率的目的。研究结果证明本模型能够较好达到研究目的,挖掘出的拥堵传导规则可以精确分析交通拥堵状况并预测未来交通流状况,因此可以为交通拥堵治理决策提供重要参考。
With the amount of city vehicles increasing sharply, traffic congestion and travel difficulty has become a disease in modern metropolis. Traffic congestion in the traffic network presents the conduction characteristics of radiation phenomenon. Congested roads tend to transfer the congestion to other adjacent sections. This process of conducting maintains certain regularity which has not been thoroughly studied before. Comparing with other methods, this study decided to extract congestion conduction model from time perspective and using big data rule mining method. Therefore, a time-related association rule mining method was proposed to capture the traffic congestion conduction features which can be further utilized for future traffic prediction. Furthermore, the extracted congestion rules are intuitively useful for establishing early warning mechanism to prevent congestion, improve the unreasonable part of road network construction plan, so as to achieve the purpose of improving traffic efficiency. Result shows the proposed model can serve the purpose effectively. Extracted rules can be used for precise analysis of traffic congestion situation and predict future traffic situation, so it can provide important reference for decision-making of traffic congestion management.
出处
《统计与信息论坛》
CSSCI
北大核心
2017年第5期96-101,共6页
Journal of Statistics and Information
基金
北京市哲学社会科学基金<基于大数据规则挖掘的交通拥堵治理研究>(15JGC166)
<经济时空分析方法及相关理论框架的初步构建>(15JGA016)
中央高校基本科研业务费专项资金<基于规则挖掘的交通拥堵传导机制研究>(2015jbwy007)
关键词
大数据
规则挖掘
交通拥堵治理
交通拥堵分析
big data
rule mining
traffic congestion management
traffic congestion analysis