期刊文献+

多种群随机差分粒子群优化算法及其应用 被引量:7

Multi-population random differential particle swarm optimization and its application
下载PDF
导出
摘要 为提高粒子群算法的寻优性能,提出了一种新的多种群随机差分粒子群优化算法。该方法将种群随机分组,利用基于吸引概率的轮盘赌方法确定其可能搜索方向。寻优效果预期不明显时,进行子种群内部随机差分进化寻优,以增加寻优方向的随机性和多样性。并给出了一种新的约束处理方法,对种群粒子进行动态划分,仅对部分粒子进行速度更新和位置更新,提高了搜索速度。并将所提出算法应用于数值优化问题和焊接梁设计问题。仿真结果表明,所提出算法在处理多峰函数问题时,寻优精度高,收敛速度快。在处理有约束问题时,提出的处理约束的方法,明显缩短了寻优时间。算法在处理复杂的无约束问题和有约束问题上均具有很好地寻优性能。 To improve the performance of particle swarm optimization, a new multi-population random particle swarm optimization,based on differential evolution,is proposed in this paper. The proposed algorithm randomly di-vides the population into several groups and uses the roulette wheel method,based on attraction probability,to de-termine the possible search direction. When the expected optimization effect is not obvious,this algorithm uses ran-dom differential evolution to generate a new solution in the sub-population,aiming to increase the randomness and diversity of the search direction. In addition,a new constraint handling method is proposed to dynamically divide populations. Particle implemented velocity and position updates are proposed to improve search speed. Finally, the proposed algorithm is applied to a numerical optimization problem and a welded beam design problem. Simulation results show that this algorithm has the advantage of high precision and fast convergence when dealing with multi-peak functions. For dealing with a constrained problem,a new method is proposed to handle the constraints,which markedly shortens the search time. The proposed algorithm shows good optimization performance for complex con-strained and unconstrained problems.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2017年第4期652-660,共9页 Journal of Harbin Engineering University
基金 国家自然科学基金项目(60674021) 辽宁省教育厅科学研究一般项目(L2014512)
关键词 粒子群优化算法 多峰问题 约束优化 轮盘赌方法 差分进化 速度更新 位置更新 搜索速度 数值优化 焊接梁设计 particle swarm optimization (PSO) multimodal problem constrained optimization roulette wheel method differential evolution velocity update position update search speed numerical optimization welded beam design
  • 相关文献

参考文献1

二级参考文献9

  • 1[1]Eberhart R,Kennedy J.A new optimizer using particle swarm theory[C].In:Proceedings of the Sixth International Symposium on Micro Machine and Human Science,1995-10:39~43
  • 2[2]Clerc M,Kennedy J.The particle swarm-explosion,stability,and convergence in a multidimensional complex space[J].Evolutionary Computation,2002; 6 (1) :58~73
  • 3[3]Kennedy J,Mendes R.Population Structure and Particle Swarm Performance[C].In:Proceedings of the 2002 Congress on Evolutionary Computation,2002; 2:1671 ~ 1676
  • 4[4]Kennedy J.Small Worlds and Mega-Minds:Effects of Neighborhood Topology on Particle Swarm Performance[C].In:Proceedings of the 1999 Congress on Evolutionary Computation,Vol 3,1999-07:1931~1938
  • 5[5]Shi Y,Eberhart R C.Empirical Study of Particle Swarm Optimization[C].In :Proceedings of the 1999 Congress on Evolutionary Computation,Vol 3,1999-07:1945~1950
  • 6[6]Xiaodong Li.Adaptively Choosing Neighbourhood Bests Using pecies in a Particle Swarm Optimizer for Multimodal Function Optimization[C].In:proceedings of Genetic and Evolutionary Computation Conference,2004-06:105~116
  • 7[7]Thiemo Krink,Morten Lovbjerg.The LifeCycle Model:Combining Particle Swarm Optimisation,Genetic Algorithms and HillClimebers[C].In:Proceedings of the seventh international conference of Parallel Problem Solving from Nature,2002-09:621~630
  • 8[8]Ratnaweera A ,Halgamuge S K,Watson H C.Self-Organizing Hierarchical Particle Swarm Optimizer With Time-Varying Acceleration Coefficients[J].Evolutionary Computation,2004;8(3) :240~255
  • 9[9]Marco Dorigo,Luca Maria Gambardella.Ant colonies for the traveling salesman problem[J].Biosystems,1997;43(2) :73~81

共引文献11

同被引文献41

引证文献7

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部