期刊文献+

一种基于Actor模型的弹性可伸缩的流处理框架 被引量:5

An Elastic Scalable Stream Processing Framework Based on Actor Model
下载PDF
导出
摘要 流处理是一种重要的大数据应用模式,在金融、广告、物联网、社交网络等众多领域得到了广泛应用.在流处理场景中,流数据的产生速度往往变化剧烈且不容易预测.这时,如果数据流量峰值超过处理系统的承载能力,可能使得系统运行缓慢甚至崩溃,导致处理作业失效;如果为了应对数据流量峰值而过度配置资源,则可能在系统轻载时产生不必要的浪费.为了解决流处理中负载和资源的匹配问题,流处理系统应该具有弹性可伸缩的能力,一方面以高效的方式组织运算资源;另一方面能根据数据流量的实时变化自动地调整资源使用量.然而,现有的流处理框架对于弹性可伸缩的支持尚很初步.介绍了一种基于Actor模型的弹性可伸缩的流处理框架eSault.eSault首先基于Actor模型将批量的处理单元进行分层管理,通过2层路由机制实现了对伸缩性的支持;在此基础上,设计一个基于数据处理延迟的过载判断算法和基于数据处理速度的轻载判断算法来指导系统对资源的有效使用,进而实现弹性可伸缩的流处理.实验结果表明:eSault具有较好的性能,而且能够很好地实现弹性可伸缩. In the era of big data,stream processing has been widely applied in financial industry,advertising,Internet of things,social networks and many other fields.In streaming scenarios,the generation speed of stream data tends to be fluctuant and difficult to predict.If the streaming peak is larger than system capacity,the system may run slowly or even crash,which leads to job failure.If excessive resources are provided in case of streaming peak,there can be unnecessary waste under light load.In order to solve the matching problem between stream processing load and resources,stream processing system should be elastically scalable,which means that provided resources can be adjusted automatically according to the real-time change of stream flow.Although some researches have made great progress in stream processing,it is still an open problem that how to design an elastic scalable system.This paper introduces eSault,an elastically scalable stream processing framework based on Actor model.eSault firstly manages the processing units stratified hierarchically based on Actor model,and realizes scalability with two-layer routing mechanism.On this basis,eSault proposes an overload judgment algorithm based on data processing delay and light load judgment algorithm based on the data processing speed to efficiently allocate the resources,and achieve elastically scalable stream processing.Experiments show that eSault has good performance,and can achieve flexible scalability well.
出处 《计算机研究与发展》 EI CSCD 北大核心 2017年第5期1086-1096,共11页 Journal of Computer Research and Development
基金 国家"八六三"高技术研究发展计划基金项目(2015AA01A202) 国家"九七三"重点基础研究计划基金项目(2011CB302604) 国家自然科学基金项目(61272154 61421091) 百度云服务开放平台示范项目(2015年)~~
关键词 流处理 Actor模型 云计算 弹性可伸缩 2层路由机制 stream processing Actor model cloud computing elastic scalable two-layer routing mechanism
  • 相关文献

参考文献4

二级参考文献104

  • 1金澈清,钱卫宁,周傲英.流数据分析与管理综述[J].软件学报,2004,15(8):1172-1181. 被引量:161
  • 2梅立军,周强,臧路,陈祖舜.知网与同义词词林的信息融合研究[J].中文信息学报,2005,19(1):63-70. 被引量:28
  • 3LIDongsheng LUXicheng.A novel constant degree and constant congestion DHT scheme for peer-to-peer networks[J].Science in China(Series F),2005,48(4):421-436. 被引量:7
  • 4张冬冬,李建中,王伟平,郭龙江.数据流历史数据的存储与聚集查询处理算法[J].软件学报,2005,16(12):2089-2098. 被引量:17
  • 5董振东,董强,郝长伶.知网的理论发现[J].中文信息学报,2007,21(4):3-9. 被引量:99
  • 6Motwani R, Widom J, Arasu A, et al. Query processing, resource management, and approximation in a data stream management system [C] //Proc of the 1st Biennial Conf on Innovative Data Systems Research. New York: ACM, 2003: 176-187.
  • 7Abadi D J, Ahmad Y, Balazinska M, et al. The design of the Borealis stream processing engine [C] //Proe of the 2nd Biennial Conf on Innovative Data Systems Research. New York: ACM, 2005: 277-289.
  • 8Chandrasekaran S, Cooper O, Deshpande A, et al. TelegraphCQ: Continuous dataflow processing for an uncertain world [C] //Proc of the 1st Biennial Conf on Innovative Data Systems Research. New York: ACM, 2003: 200-211.
  • 9Dean J, Ghemawat S. MapReduce: Simplified data processing on large clusters [J]. Communications of ACM, 2008, 51(1): 107-113.
  • 10Ranger C, Raghuraman R, Penmetsa A, et al. Evaluating MapReduce for multi core and multiprocessor systems [C] // Proc of the 13th Int Conf on High-Performance Computer Architecture. Los Alamitos, CA: IEEE Computer Society, 2007:13-24.

共引文献839

同被引文献30

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部