期刊文献+

基于ARVM模型的液体火箭发动机试验台故障预测方法 被引量:1

Fault Prediction Method for Liquid Rocket Engine Test Stand Based on ARVM Model
下载PDF
导出
摘要 针对液体火箭发动机试验台故障子样少,故障预测精度低,故障维修保障困难等问题,在分析标准RVM优缺点的基础之上,提出了一种自适应能力较强的故障预测模型——ARVM(Adaptive Relevance Vector Machine)。为测试该模型,以某型轨控发动机高空模拟试验台管路流量、燃烧室压力为输入参量对推力矢量进行了预测,预测结果表明,ARVM方法能够有效跟踪推力矢量参数的变化趋势,并且获得了较高的预测精度和模型稀疏性。该方法对于复杂系统的故障预测和维修保障具有一定的理论价值和工程应用意义。 Aiming at the problems of rare faulty samples,low accuracy of fault prediction and difficulty in maintenance and repair of liquid rocket engine test stand,based on the analysis of the advantages and disadvantages of standard RVM,a fault prediction ARVM model with strong adaptive ability is proposed. In order to test this model,the thrust vector of the high-altitude simulation test stand of a certain orbit control engine is predicted using the flow rate and combustor pressure as input parameters. The prediction result shows that,ARVM method can effectively track the trend of the thrust vector parameters,and obtain a higher prediction accuracy and model sparseness. This method has certain theoretical value and engineering application significance for fault prediction and maintenance of complex systems.
出处 《宇航计测技术》 CSCD 2017年第2期30-35,共6页 Journal of Astronautic Metrology and Measurement
基金 装备预先研究航天支撑资助项目(617010604)
关键词 液体火箭 发动机试验台 ARVM 故障预测 Liquid rocket Engine test-stand ARVM Fault prediction
  • 相关文献

参考文献4

二级参考文献45

  • 1瓦普尼克.统计学习理论的本质[M].北京:清华大学出版社,2004.
  • 2WEBB A R.统计模式识别[M].2版.北京:电子工业出版社,2004:15-16.
  • 3SHAWE-TAYLOR J, CRISTIANINI N. Kemel methods for pattern analysis [ M ]. Cambridge : Cambridge University Press,2004.
  • 4MICHAEL E T. Sparse Bayesian learning and the relevance vector machine[ J ]. ,Journal of Machine Learning Research, 2001,1:211 - 244.
  • 5[EB/OL]. http ://stats. ox. ac. uk/pub/pmn.
  • 6[EB/OL]. http ://kdd. ics. edu/summary. data. type. html.
  • 7Capobianco E. On support vector machines and sparse approximation for random processes [ J ]. Neurocomputing, 2004,56 : 39 -60.
  • 8Francis E H Tay, Cao L J. Application of support vector machines in financial time series forecasting [ J ]. Omega, 2001,29 : 309 -317.
  • 9Smola A J, Scholkoph B. A tutorial on support vector regression [J]. Statistics and Computing, 2004,14(3) :199 -222.
  • 10Goh K M, Tjahjono B, Baines T, et al. A review of research in manufacturing prognostics[C]// Proc. of the IEEE Interna- tional Conference on Industrial In f ormatics ,2006:417 - 422.

共引文献51

同被引文献38

引证文献1

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部