期刊文献+

基于PCNN的图像椒盐噪声滤除方法 被引量:2

Filtering image impulse noise by using a PCNN image noise reduction technique
下载PDF
导出
摘要 传统的降噪方法在图像降噪之后会损坏图像的部分边缘细节信息,致使图像的轮廓变得模糊不清。为了达到更好的图像降噪效果,提出一种改变突触链接强度和改进阈值函数的脉冲耦合神经网络的图像降噪方法。该方法将基本脉冲耦合神经网络模型进行简化,使突触链接强度自适应取值,将阈值函数改进为分段的衰减函数,从而提高对图像不同灰度值的分辨力,并根据神经元与其周围神经元点火时间差定位噪声点,提高了算法对噪声点的辨识精确度,进而实现更好的降噪效果。实验结果表明,改进方法准确地辨识出了图像的椒盐噪声点,并且能够有效去除噪声点,同时很好地保护图像边缘细节。 Traditional methods for image noise reduction typically damage the edges and details of an image, blur image contours, and thereby make them indistinct after image noise reduction is complete. To achieve better results in image noise reduction, we propose a pulse coupling neural network (PCNN) image noise reduction method based on a modified synaptic link strength and a modified threshold function. We simplified the basic PCNN model and adaptively changed the synaptic link strength value; further, we improved the threshold function by using a segmented attenuation function so as to improve the resolving power for different gray values of the given images. We improved the accuracy of our algorithm for identifying noise by positioning noise points according to the difference of firing times between the neuron and its surrounding neurons. Using this approach, we achieved better noise reduc- tion results; our experimental results showed that our proposed method was able to accurately identify image impulse noise points and effectively remove these noise points. Further, through subjective evaluation, we observed that im- age edge details were also protected.
出处 《智能系统学报》 CSCD 北大核心 2017年第2期272-278,共7页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金项目(51375317)
关键词 图像降噪 脉冲耦合神经网络 突触链接强度 阈值函数 分辨力 image noise reduction pulse coupling neural network synaptic link strength threshold function resolving power
  • 相关文献

参考文献4

二级参考文献32

  • 1梁化楼,戴贵亮.人工神经网络与遗传算法的结合:进展及展望[J].电子学报,1995,23(10):194-200. 被引量:71
  • 2刘刚,张洪刚,郭军.不同训练样本对识别系统的影响[J].计算机学报,2005,28(11):1923-1928. 被引量:15
  • 3韦岗 贺前华.神经网络模型学习及应用[M].北京:电子工业出版社,1994.85-98.
  • 4Hara K., Nakayama K., Karaf A.A.M.. A training data selection in on-line training for multilayer neural networks. In: Proceedings of the IEEE World Congress on Computational Intelligence. The 1998IEEE International Joint Conference on Neural Networks Proceedings, 1998, 3: 2247~2252
  • 5Luo D.S., Chen K.. Refine decision boundaries of a statistical ensemble by active learning. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN'03), Portland, 2003, 1523~1528
  • 6Lampinen J., Litkey P., Hakkarainen H.. Selection of training samples for learning with hints. In: Proceedings of the International Joint Conference on Neural Networks, Washington, 1999, 2: 1438~1441
  • 7Mehta M, Agrawal R, Rissanen J. SLIQ: A Fast Scalable Classifier for Data Mining. In: Proc of the 5th International Conference on Extending Database Technology. Avignon, France,1996, 18-32
  • 8Shafer J, Agrawal R, Mehta M. SPRINT: A Scalable Parallel Classifier for Data Mining. In: Proc of the 22nd International Conference on Very Large Databases. Bombay, India, 1996,544-555
  • 9Prodromidis A L. Management of Intelligent I.earning Agents in Distributed Data Mining Systems. Ph. D Dissertation. Department of Computer Seienee, Columbia University, New York,USA, 1999
  • 10Chan P K W. An Extensible Meta-Learning Approach for Scalable and Accurate Inductive Learning. Ph. D Dissertation. Department of Computer Science, Columbia University, New York, USA, 1996

共引文献70

同被引文献16

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部