期刊文献+

基于PSO-SVM的城市桥梁群体震害预测模型研究 被引量:3

Study on Seismic Damage Prediction Model of Urban Bridges Group Based on PSO-SVM
下载PDF
导出
摘要 本文根据城市桥梁群体的实际震害资料数据,采用粒子群算法(PSO)来优化支持向量机(SVM)参数,选择影响桥梁震害等级的8个因素作为特征输入向量,充分用2种算法的优点建立PSO-SVM的桥梁震害预测模型。通过比较PSO-SVM和SVM模型对桥梁震害的预测能力,发现PSO-SVM模型具有较高预测精度和较高的推广价值。本文的研究成果对桥梁震害等级的预测具有一定的参考价值和指导意义。 According to the observed urban bridge damage data, the particle swarm optimization (PSO) was used to optimize the input parameters of support vector machine (SVM) model. Eight factors that effect bridge seismic damage level are chosen as the input vector. By making full use of the advantages of PSO and SVM, we establish the PSO-SVM model. By comparing the urban bridge damage prediction ability of the SVM model and PSO-SVM model, we conclude that the PSO-SVM model has relatively high accuracy and strong generalization capability, which is of important reference and guide value.
出处 《震灾防御技术》 CSCD 北大核心 2017年第1期185-193,共9页 Technology for Earthquake Disaster Prevention
关键词 粒子群-支持向量机 支持向量机 桥梁 震害预测 PSO-SVM: SVM Bridge Seismic damageprediction
  • 相关文献

参考文献8

二级参考文献56

共引文献84

同被引文献48

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部