期刊文献+

基于SAMP的低复杂度大规模MIMO信号检测算法 被引量:2

Low-complexity signal detection based on SAMP method for massive MIMO
下载PDF
导出
摘要 在大规模MIMO系统上行链路中,最小均方误差(MMSE)算法能达到近似最优的线性信号检测性能。但是,MMSE算法引入了高计算复杂度的矩阵求逆运算。文中提出了一种基于简化近似信息传递(Simplified Approximate Message Passing,SAMP)的低复杂度迭代阈值算法以替代矩阵求逆,并通过重构准确的有效噪声方差及设置合适的初始值,进一步提高了检测性能。仿真结果表明,在设定的有效噪声方差和合适的初始值条件下,仅通过少数几次迭代,SAMP算法就能够以较低的计算复杂度快速接近MMSE算法的检测性能。 Minimum mean square error (MMSE) linear detection algorithm can achieve nearly optimal performance in large-scale MIMO system uplink. However, the MMSE detection algorithm involves a complicated matrix inversion. This paper proposes a low-complexity iterative thresholding algorithm, referred to as simplified approximate message passing (SAMP) method to substitute the matrix inversion. In addition, the exact effective noise variance and the initial solution are presented to further improve the detection performance. Simulation results show that the SAMP algorithm can quickly approach the detection performance of MMSE algorithm with low computational complexity by only a few iterations under the conditions of the effective noise variance and the suitable initial value.
出处 《南京邮电大学学报(自然科学版)》 北大核心 2017年第2期15-20,共6页 Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
基金 国家科技重大专项(2016ZX03001010-004)资助项目
关键词 大规模MIMO 低复杂度 简化近似信息传递 误比特率 large-scale MIMO low complexity simplified approximate message passing bite error rate
  • 相关文献

参考文献2

二级参考文献34

  • 1WANG L C ,RANGAPILLAI S. A survey on green 5G cellu- lar networks[ C] ffIEEE International Conference on SignalProcessing and Communications (SPCOM). 2012 : 1 - 5.
  • 2LARSSON E, TUFVESSON F, EDFORS O, et al. Massive MIMO for next generation wireless systems [ EB/OL ]. [ 2014-06-25 ]. http://arxiv, org/abs/1304. 6690.
  • 3MARZETYA T L. How much training is required for muhi- user MIMO? [ C ] //IEEE 40th Asilomar Conference on Signals, Systems and Computers ( ACSSC ). 2006: 359 - 363.
  • 4HOYDIS J S T B,DEBBAH M. Massive MIMO in the UL/ DL of cellular networks: How many antennas do we need? [J]. IEEE Journal on Selected Areas in Communications, 2013,21(2) :160-171.
  • 5NGO H Q,ERIK G,THOMAS L. Energy and spectral effi- ciency of very large muhiuser MIMO systems [ J ]. IEEE Transactions on Communications, 2013, 61 ( 4 ): 1436 - 1449.
  • 6RUSEK F,PERSSON D, LAU B K, et al. Sealing up MI- MO: Opportunities and challenges with very large arrays [J]. IEEE Signal Processing Magazine, 2013,30 ( 1 ) : 40 - 60.
  • 7LARSSON E G. MIMO detection methods:How they work [J]. IEEE Signal Processing Magazine, 2009,26 ( 3 ) ~ 91 -95.
  • 8GESBERT D, KOUNTOURIS M, HEATH R W. Shifting the MIMO paradigm [ J ]. IEEE Signal Processing Maga- zine,2007,24(5) :36 -46.
  • 9GUO K, ASCHEID G. Performance analysis of multi-cell MMSE based receivers in MU-MIMO systems with very large antenna arrays[ C]//IEEE Wireless Communications and Networking Conference (WCNC). 2013:3175 - 3179.
  • 10MARZETYA T L. Noncooperative cellular wireless with unlimited numbers of base station antennas [ J ]. IEEE Transactions on Wireless Communications, 2010,9 ( 11 ) ~ 3590 - 3600.

共引文献6

同被引文献4

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部