摘要
提出并建立了证明Noether准对称性与守恒量定理的时间重新参数化方法。首先,在时间不变的无限小变换群下给出Lagrange系统和Hamilton系统的Noether准对称性定理;其次,利用时间重新参数化方法给出在时间变化的一般无限小变换群下Lagrange系统和Hamilton系统的Noether准对称性定理。最后,举例说明结果的应用。
The time-reparameterization method was proposed and applied to prove Noether's theorems of quasi- symmetry and conserved quantity. Firstly, based on the infinitesimal group of transformations without transforming time, Noether,s quasi -symmetry theorems for Lagrange system and Hamilton system were given. Secondly, Noether's quasi-symmetry theorems for Lagrange system and Hamilton system under the general infinitesimal group of transformations with transforming time were given by using the time-reparameterization method. Finally, two examples were provided to illustrate the application of the results.
作者
刘艳东
张毅
LIU Yandong ZHANG Yi(l.School of Mathematics and Physics, SUST,Suzhou 215009,China School of Civil Engineering, SUST,Suzhou 215011, China)
出处
《苏州科技大学学报(自然科学版)》
CAS
2017年第2期1-7,共7页
Journal of Suzhou University of Science and Technology(Natural Science Edition)
基金
国家自然科学基金资助项目(11272227
11572212)
苏州科技大学研究生科研创新计划资助项目(SKYCX16_004)