期刊文献+

基于低秩矩阵恢复交通视频背景重建性能评价 被引量:2

Performance evaluation of traffic video background reconstruction based on low-rank matrix recovery
下载PDF
导出
摘要 为分析低秩矩阵恢复算法在交通视频背景重建中的性能,分别对基于矩阵补全、鲁棒主成分分析和低秩表示3种低秩恢复方法做交通视频背景重建实验。分别针对环境光照变化、不同车流量、阴影等场景进行测试。为客观评价算法性能,使用SBMI2015推荐的评测指标,结合算法复杂度和执行效率说明算法性能优劣。与目前常用的加权移动平均法、自适应背景学习算法和高斯混合模型法进行对比。实验结果表明,对于缓变交通场景,低秩矩阵恢复算法在处理环境光照变化、较大车流量和克服阴影等不利因素时,较传统背景重建算法有突出优势。综合指标表明,鲁棒主成分分析方法在交通场景背景视频重建中的性能优于其它方法。 For evaluating the performance of low-rank matrix recovery (LRMR) algorithms in the background reconstruction of traffic video, a series of tests were performed on matrix completion (MC) , robust principal component analysis (RPCA) and low-rank representation (LRR) to recover the traffic video background. These algorithms were compared with some traditional background recovery methods including weighted moving average, adaptive background learning and Gaussian mixture model. In the experiments, three situations were taken into account, i. e. illumination changing, different traffic flow and shadow. A group of metrics recommended by SBMI2015 was adopted as evaluation criterions, as well as the common algorithm performance metrics,such as CPU time and algorithm efficiency. Experimental results show that for the slow change traffic scene, LRMR al-gorithms outperform the traditional methods in overcoming difficult environmental conditions. In overall, RPCA has the best performance among LRMR algorithms in traffic video background reconstruction.
作者 陈川 纪晓佳 陈柘 CHEN Chuan JI Xiao-jia CHEN Zhe(Naval Aeronautical Engineering Academics Qingdao Branch,Qingdao 266041,China School of Information Engineering, Chang'an University, Xi'an 710064, China)
出处 《计算机工程与设计》 北大核心 2017年第5期1301-1306,1318,共7页 Computer Engineering and Design
基金 交通运输部应用基础研究基金项目(2014319812150) 人社部留学人员科技活动项目择优基金项目(2015192) 长安大学大学生创新创业训练计划基金项目(201410710044)
关键词 低秩矩阵恢复 背景建模 矩阵补全 鲁棒主成分分析 低秩表达 low-rank matrix recovery background modeling matrix completion robust principal component analysis low-rank representation
  • 相关文献

参考文献4

二级参考文献84

  • 1李刚,曾锐利,林凌,王蒙军.基于帧间颜色梯度的背景建模[J].光学精密工程,2007,15(8):1257-1262. 被引量:7
  • 2BOUWMANS T, BAF F E, VACHON B. Statistical background mod- eling for foregromld detection : A survey [ J ]. Handbook of Pattern Recognition and Computer Vision, World Scientific Publishing, 2010,4(2) :18 - 189.
  • 3BOUWMANS T. Subspace learning for background modeling:A survey [J]. Recent Patent on Computer Science,2009,2(3):223-234.
  • 4WRIGHT J, GANESH A,RAO S,et al. Robust principal component analysis:Exact recovery of corrupted low-rank matrices via convex optimization [ C ] //Proceedings of Neural Information Processing Systems (NIPS). 2009.
  • 5LIN Zhouchen. Some software packages for partial SVD computation [ EB/OL]. ( 2011-08-09 ) [ 2012-06-21 ]. http:///arxiv, org/abs/ 1108. 1548v2.
  • 6CANDES E J, LI X, MA Y,et al. Robust principal component analy- sis? [ J ]. Journal of the ACM ,2011,58 ( 3 ) :233 - 279.
  • 7CHANDRASEKARAN V,SANGHAVI S, PARRILO P, et al. Rank- sparsity incoherence for matrix decomposition [ J ]. SIAM Journal on Optimization ,2011,21 ( 2 ) :572 - 596.
  • 8LIN Z, CHEN M, WU L,et al. The augmented Lagrange multiplier method for exact recovery of a corrupted low-rank matrix[ R]. Illi- nois : University of Illinois,2010.
  • 9YUAN X, YANG J. Sparse and low-rank matrix decomposition via altemating direction methods [ R ]. Hang Kong: Hang Kong Baptist University, 2009.
  • 10LIN Z, GANESH A, WRIGHT J, et al. Fast convex optimization al- gorithms for exact recovery of a corrupted low-rank matrix [ C ] // Proceedings of Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP). 2009.

共引文献110

同被引文献17

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部