期刊文献+

药物实体和药物相互关系的联合识别 被引量:4

Joint extraction of drug entity and drug-drug interaction
下载PDF
导出
摘要 目前在识别药物实体和药物相互关系的方法中,使用的主要是串行的方法。这类方法会带来误差传递和无法利用两步相关性的缺点。结构感知机算法能改进这两大缺点。同时对药物实体和药物相互关系进行搜索,利用实体信息和实体关系信息对结果进行打分,选取最好的结果。实验结果表明,该算法对药物实体和药物关系的识别效果对比串行算法有较大提高,针对生物信息文本设计的特征能有效提高算法性能。 The methods used to extract drug entities and drug-drug interactions are mostly pipeline approaches. These methods will bring two defects, the error producing in the first step will propagate to the next step, and they cannot make use of the rela-tions between two steps. Structured perceptron algorithm can overcome these defects. Drug entities and drug-drug interactions were searched simultaneously,and the results were rated according to entity information and entity relation information, the best result was then figured out. Experimental results suggest that the proposed algorithm outperforms pipeline approaches and the features designed for biomedical text are useful to improve the performance of algorithm.
作者 刘奔 姬东鸿 LIU Ben JI Dong-hong(Computer School, Wuhan University, Wuhan 430072, Chin)
出处 《计算机工程与设计》 北大核心 2017年第5期1377-1381,共5页 Computer Engineering and Design
关键词 命名实体识别 药物相互关系 感知机 联合识别 实体关系抽取 named entity recognition drug-drug interaction perceptron joint extraction entity relation extraction
  • 相关文献

同被引文献18

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部