期刊文献+

虚拟阵列Khatri-Rao积与子空间联合稀疏表示的DOA估计方法 被引量:2

Virtual Array Khatri-Rao Product and Subspace Joint Sparse Representation Method of DOA Estimation
下载PDF
导出
摘要 利用目标信号在空域分布的稀疏性,该文提出了一种基于虚拟阵列Khatri-Rao(KR)积与信号子空间联合稀疏表示的单快拍DOA估计方法;该方法利用单次快拍的采样数据,构造出双向虚拟阵列数据,并对虚拟阵列数据的协方差矩阵进行KR积变换处理,然后对向量化后的数据进行顺序重构,利用重构矩阵的大奇异值对应的左奇异向量为估计信号子空间;最后,利用凸优化工具箱对稀疏模型进行二阶凸规划的优化求解,得到高精度的DOA估计值;仿真实验验证了算法的有效性,在低信噪比下比传统MUSIC和OMP算法具有更高的估计精度。 Using the target signal in the spatial distribution of sparse,this paper puts forward a Khatri-Rao(KR)product based on virtual array and signal subspace joint sparse representation of single snapshot DOA estimation method.The method uses a single snapshot sampling data,constructs the two-way virtual array data,and the covariance matrix of the virtual array data for KR product transformation process,and then to reconstruct the order of data after vectorization,by using the large singular values of reconstruction matrix left singular vectors of the corresponding to estimate the signal subspace;Finally,using convex optimization toolbox for sparse matrix model of quadratic convex programming optimization solution,get high accuracy DOA estimate.Simulation experiments verify the effectiveness of the algorithm,under the low SNR has higher estimation accuracy than traditional MUSIC,SVD and OMP algorithm.
出处 《计算机测量与控制》 2017年第5期147-149,154,共4页 Computer Measurement &Control
基金 国家自然科学基金资助项目(61372039)
关键词 虚拟阵列 KhatH-Rao积 稀疏表示 单快拍 波达方向估计 virtual array Khatri-Rao product sparse representation single snapshot DOA
  • 相关文献

参考文献5

二级参考文献73

  • 1叶中付,沈凤麟.一种快速的二维高分辨波达方向估计方法——混合波达方向矩阵法[J].电子科学学刊,1996,18(6):567-573. 被引量:14
  • 2刁鸣,缪善林,张一飞.基于特殊阵列的相干信源二维测向新方法[J].系统工程与电子技术,2007,29(3):338-340. 被引量:3
  • 3YILMAZER N, KOH J, SARKAR T K. Utilization of a unitary transform for efficient computation in the matrix pencil method to find the direction of arrival [J]. IEEE Transactions on Antennas and Propagation, 2006, 54 : 175 - 181.
  • 4TAYEM N, POUR M N. A unitary music-like algorithm for coherent sources [ C ]//IEEE Vehicular Technology Conference. Baltimore: Institute of Electrical and Elec- tronics Engineers Inc., 2007:551 -555.
  • 5SCHMIDT R O. A signal subspace approach to multiple emitter location and spectral estimation [ D ]. Califor- nia: Stanford University, 1981.
  • 6ROY R, KAILATH T. ESPRIT-estimation of signal pa- rameters via rotational invariance techniques [ J ]. IEEE Trans on ASSP, 1989, 37(7) : 984 -995.
  • 7SHAN T J, WAX M, KAILATH T. On spatial smoot- hing for direction of arrival estimation of coherent signals [J]. IEEE Trans Acoust Speech Signal Process, 1985, 33(4) :806 -811.
  • 8PILLAI S U, KWON B H. Forward/backward spatial smoothing techniques for coherent signal identification [J]. IEEE Trans Acoust Speech Signal Process, 1989, 37(1) :8 -15.
  • 9LIU Fuguang, DIAO Ming. A novel algorithm for DOA estimation[ C ]//Second International Symposium on In- formation Science and Engineering. Shanghai: IEEE, 2009:488 - 492.
  • 10BAI Jun, SHEN Xiaohong, WANG Haiyan, et al. Im- proved Toeplitz algorithms to coherent sources DOA esti- mation [ C ]//International Conference on Measuring Technology and Mechatronics Automation. Changsha: IEEE, 2010:442 - 445.

共引文献48

同被引文献24

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部