期刊文献+

基于多尺度的水下图像显著性区域检测 被引量:2

Underwater image saliency detection based on multi-scale
下载PDF
导出
摘要 图像显著性检测在目标识别、目标跟踪、视觉信息挖掘等研究中具有重要价值,而水下图像研究又是海洋相关学科的基础。文章针对水下图像特性,提出一种结合Retinex图像增强和超像素分割算法的多尺度显著性区域检测方法,以获取均匀、清晰的显著图。在每个尺度上进行超像素显著性估计和贝叶斯概率估计,将不同尺度的显著图进行加权求和与导向滤波,得到平滑且边缘清晰的显著图。根据水下不同倍数的衰减距离建立数据集,验证了该算法具有较强的鲁棒性。 Image saliency detection has important value in the research of target recognition, target tracking, visuaon,and the underwater image research is the basis of marine-related disciplines. According to the characteristics of underwater image,this pa-per proposes a saliency region detection algorithm to obtain uniform and clear saliency map combined witli Retinex image enhancement and multi-scale analysis on superpixels. Superpixel saliency and Bayesian probability estimation are performed on each scale,the final smooth and sharp saliency map is optimized by weighted summation and a guided filter. According to the diferent multip)les of underwater attenuation dis-tance ,datasets are established,which verifies the robustness of the algorithm.
作者 刘晓阳 薛纯 Liu Xiaoy ang Xue Chun(College of Information Science and Engineering, Ocean University of China, Qingdao 266100, China)
出处 《微型机与应用》 2017年第9期45-48,共4页 Microcomputer & Its Applications
关键词 图像增强 超像素 贝叶斯估计 显著性 image enhancement super-pixel Bayesian estimation saliency detection
  • 相关文献

参考文献1

二级参考文献12

  • 1PEREZ P,HUE C,VERMAAK J,et al.Color-based probabilistic tracking[C]the 7th European Conference on Computer Vision.Copenhagen:Springer Berlin Heidelberg,2002:661-675.
  • 2SAKARI V,SETHI I K.Feature point correspondence in the presence of occlusion[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1990,12(1):87-91.
  • 3RANGARAJAN K,SHAH M.Establishing motion correspondence[C]IEEE Conference on Computer Vision and Pattern Recognition,1991:103-108.
  • 4ADAM A,RIVLIN E,SHIMSHONI I.Robust fragments-based tracking using the integral histogram[C].IEEE Conference on Computer Vision and Pattern Recognition,2006:798-805.
  • 5BORJI A,ITTI L.State-of-the-art in visual attention modeling[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(1):185-207.
  • 6ITTI L,KOCH C,NIEBUR E.A model of saliency-based visual attention for rapid sceneanalysis[J].IEEE Transactionson Pattern Analysis and Machine Intelligence,1998,20(11):1254-1259.
  • 7Cheng Mingming,Zhang Guoxin,MITRA N J,et al.Global contrast based salient region detection[C]IEEE Conference on Computer Vision and Pattern Recognition,2011:409-416.
  • 8牛德智,陈长兴,班斐,陈芳,王卓,陈强.基于变步长重采样的非高斯非线性目标跟踪[J].电子技术应用,2014,40(8):129-132. 被引量:3
  • 9赵宇宙,陈宗海.显著子区域在线选择的目标鲁棒跟踪[J].控制与决策,2014,29(10):1788-1792. 被引量:2
  • 10陈娴,彭宏,吴海巍.视频监控在高速路作业调度系统上的应用[J].微型机与应用,2015,34(1):20-22. 被引量:1

共引文献1

同被引文献14

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部