期刊文献+

深度学习最佳深度的确定 被引量:1

Determination of the optimum depth in deep learning
下载PDF
导出
摘要 确定最佳深度可以降低运算成本,同时可以进一步提高精度。针对深度置信网络深度选择的问题,文章分析了通过设定阈值方法选择最佳深度的不足之处。从信息论的角度,验证了信息熵在每层玻尔兹曼机(RBM)训练达到稳态之后会达到收敛,以收敛之后的信息熵作为判断最佳层数的标准。通过手写数字识别的实验发现该方法可以作为最佳层数的判断标准。 Abstract:The best depth can reduce operation cost while can improve the precision . Aiming at the problem of deep b elief networls dep th selec-tion , the paper analyzes the deficiencies of setting the threshold value metliod to select the b est depth . From the perspective of in formation theo-ry ,firstly , by verifying the in formation en tropy will converge in each layer of the Boltzmann machine ( RBM ) after training reaching steady state, convergence of in formation entropy as criteria for ju d ging the best layers. T h rough the experiments can be found that this meth iod can be used as a criterion of the optimal layer .
作者 蔡楚华 兰诚栋 陈康杰 Cai Chuhua Lan Chengdong Chen Kangjie(College of Physics and In formation Engineerin g, Fuzhou University , Fuzhou 350116, China)
出处 《微型机与应用》 2017年第9期57-59,66,共4页 Microcomputer & Its Applications
基金 福建省自然科学基金资助项目(2014J01234) 福建省教育厅基金资助项目(JA15061)
关键词 深度置信网络 信息熵 最佳深度 deep belief networls entropy of information optimum depth
  • 相关文献

参考文献3

二级参考文献75

  • 1叶世伟,史忠植.神经网络原理[M].北京:机械工业出版社,2006.
  • 2Lee T S, Mumford D. Hierarchical Bayesian inference in the visual cortex[J]. Optical Society of America, 2003, 20(7): 1434-1448.
  • 3Rossi A F, Desimone R, Ungerleider L G. Contextual modulation in primary visual cortex of macaques[J]. J of Neuroscience, 2001, 21(5): 1689-1709.
  • 4Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
  • 5Dahl G E, Yu D, Deng L, et al. Large vocabulary continuous speech recognition with context-dependent DBN-HMMS[C]. Proc of IEEE Int Conf on Acoustics, Speech and Signal Processing. Prague, 2011:4688-4691.
  • 6Deselaers T, Hasan S, Bender O, et al. A deep learning approach to machine transliteration[C]. Proc of the 4th Workshop on Statistical Machine Translation. Athens, 2009: 233-241.
  • 7Fasel I, Berry J. Deep belief networks for real-time extraction of tongue contours from ultrasound duringspeech[C]. Proc of the 20th Int Conf on Pattern Recognition. Stroudsburg: Association for Computational Linguistics, 2010: 1493-1496.
  • 8Deng L, Seltzer M L, Yu D, et al. Binary coding of speech spectrograms using a deep auto-encoder[C]. Proc of the 1 lth Annual Conf on Int Speech Communication Association. Makuhair, 2010: 1692-1695.
  • 9Bengio Y. Learning deep architectures for AI[J]. Foundations & Trends in Machine Learning, 2009, 2(1): 1-127.
  • 10Yoshua Bengio, Pascal Lamblin, Dan Popovici, et al. Greedy layer-wise training of deep networks[C]. Advances in Neural Information Processing Systems 19 (NIPS 2006). Vancouver, 2007: 153-160.

共引文献163

同被引文献5

引证文献1

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部