期刊文献+

单矢量水听器水中多目标方位跟踪方法 被引量:3

Method of direction of arrival tracking for multiple targets under water with single vector hydrophone
下载PDF
导出
摘要 采用量子粒子群求解声压和质点振速组成的非线性相关方程组,实现多目标声源方位的估计。为提高精度,应用最小二乘法对测量结果进行拟合并建立预测模型,通过卡尔曼滤波对方位轨迹进行优化。结果表明:单矢量水听器能够同时分辨多个目标方位,解算结果应使用统计特性表示;采用本方法最多能分辨7个目标,目标个数越多,方位误差越大;信噪比越高,分辨率和精度越高,偏差越小;通过数据拟合然后卡尔曼滤波的方法能够有效提高目标方位跟踪精度。 The direction of arrival ( DOA) of multiple targets was acquired by solving non-liner correlation equations involving acoustic pressure and particle velocity with quantum particle swarm algorithm. In order to improve the precision, the DOA tracks of multiple targets were fitted with the method of least squares, the prediction model was found and then the DOA tracks were optimized by Kalman filter. The results indicate that the DOA of multiple targets can be resolved with the single vector hydrophone and the results should be expressed by statistic characteristics. The maximum number of unknown sources is 7. As the number increases, the DOA error is more serious. When the signal to noise ratio is higher, the resolution ratio and precision are also higher and the deviation is smaller. More importantly, the precision of DOA can be improved effectively by the method of data fitting and the Kalman filter.
作者 张维 尚玲 ZHANG Wei SHANG Ling(Yichang Research Institute of Testing Technology, Yichang 443003 , Chin)
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2017年第2期114-119,共6页 Journal of National University of Defense Technology
基金 国家部委基金资助项目(9140A05020514CB40014)
关键词 多目标方位 单矢量水听器 卡尔曼滤波 最小二乘法 量子粒子群 direction of arrival of multiple targets single vector hydrophone Kalman filter method of least squares quantum particle swarm
  • 相关文献

参考文献8

二级参考文献35

  • 1杨争斌,郭福成,周一宇.迭代IMM机动目标被动单站跟踪算法[J].宇航学报,2008,29(1):304-310. 被引量:5
  • 2Vladimir A. Shchurov,Marianna V. Kuyanova(Pacific Oceanological Institute, Far Eastern Branch of Russian Academg of Sciences Russia).Use of acoustic intensity measurements in underwater acoustics (Modern state and prospects)[J].Chinese Journal of Acoustics,1999,18(4):315-326. 被引量:9
  • 3姚直象,惠俊英,王德俊,蔡平.用单个矢量水听器基于DEMON线谱的双目标分辨[J].应用声学,2005,24(3):171-176. 被引量:14
  • 4李良群,姬红兵,罗军辉.迭代扩展卡尔曼粒子滤波器[J].西安电子科技大学学报,2007,34(2):233-238. 被引量:60
  • 5陶笃纯.按辐射噪声平均功率谱形状识别船舶目标.声学学报,1981,(4):52-56.
  • 6Mazor E,Averbuch A,and Bar-Shalom Y,et al..Interacting multiple model methods in target tracking:a survey[J].IEEE Transactions on Aerospace and Electronic Systems,1998,34(1):103-123.
  • 7Kim Byung-doo and Lee Ja-sung.IMM algorithm based on the analytic solution of steady state Kalman filter for radar target tracking[C].IEEE International Radar Conference,Arlington,Virginia,USA,May,2005:757-762.
  • 8Cappe O,Godsill S J,and Moulines E.An overview of existing methods and recent advances in sequential Monte Carlo[J].Proceedings of the IEEE,2007,95(5):899-924.
  • 9Boers Y and Driessen J N.Interacting multiple model particle filter[J].IEE Proceedings-Radar Sonar Navigation,2003,150(5):344-349.
  • 10Morelande M R and Challa S.Maneuvering target tracking in clutter using particle filters[J].IEEE Transactions on Aerospace and Electronic Systems,2005,41(1):252-270.

共引文献173

同被引文献19

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部