摘要
提出了基于Marr小波核函数最小二乘支持向量机(Marr-LSSVM)的顺风向非高斯空间风压预测算法。通过传统高斯核函数(RBF)和多项式核函数(Poly)的乘法运算,提出了Poly*RBF-LSSVM(MK-LSSVM)的空间风压预测算法。运用粒子群优化(PSO)算法,对Marr-LSSVM、传统单核CSK-LSSVM和MK-LSSVM的惩罚参数、核函数参数、权重、尺度因子进行优化,建立基于智能优化的非高斯空间风压预测算法;以30 m和50 m处模拟顺风向风压时程作为输入样本,使用提出的预测算法对40 m处风压时程进行了预测。数值分析表明,Marr-LSSVM、MK-LSSVM比CSK-LSSVM具有明显高的非高斯风压预测性能。
Here, Marr wavelet kernel-based least squares support vector machines (LSSVM) referred to as Marr-LSSVM, was proposed to predict along-wind non-Gaussian spatial wind pressure. Through multiplication operation of the conventional radial basis function (RBF) kernel and polynomial kernel, Poly*RBF-LSSVM was then proposed, it was called the multiplicative mixed kernel MK-LSSVM. By using the particle swarm optimization (PSO) algorithm, optimizations were implemented for penalty parameters, kernel parameters, weights, and scale factors of Marr-LSSVM, conventional single kernel CSK-LSSVM, and MK-LSSVM, thus the non-Gaussian spatial wind pressure forecasting algorithms were built based on intelligent optimization. The simulated along-wind pressures at 30 m and 50 m were taken as input samples, the wind pressure at 40 m was then predicted using the proposed algorithms. The numerical analyses demonstrated that Marr-LSSVM and MK-LSSVM can provide an obvious higher performance to predict the non-Gaussian spatial wind pressure than CSK-LSSVM can. © 2017, Editorial Office of Journal of Vibration and Shock. All right reserved.
出处
《振动与冲击》
EI
CSCD
北大核心
2017年第9期116-121,共6页
Journal of Vibration and Shock
基金
国家自然科学基金(51378304)
关键词
预测
顺风向非高斯风压
小波核函数
乘法混合核函数
最小二乘支持向量机
粒子群优化
Forecasting
Gaussian distribution
Gaussian noise (electronic)
Optimization
Particle swarm optimization (PSO)
Radial basis function networks
Scales (weighing instruments)
Structural dynamics
Support vector machines