期刊文献+

基于超奈奎斯特镜像混叠的正交频分复用无源光网络 被引量:2

OFDM Passive Optical Networks Based on Super-Nyquist Image Induced Aliasing
下载PDF
导出
摘要 结合自相位调制引入负啁啾和超奈奎斯特镜像混叠技术,实现了一个大容量、大功率预算的长距离无源光网络(Long reach passive optical networks,LR-PON)系统。引入镜像混叠后,混叠部分的子载波将引入分集,提出采用分数采样和逐子载波最大比值合并(Maximum ratio combining,MRC)算法来获得分集增益。仿真和实验结果表明通过使用大入纤功率和镜像混叠,可将10GHz带宽正交相移键控(Quadrature phase shift keying,QPSK)调制的正交频分复用(Orthogonal frequency-division multiplexing,OFDM)信号传输距离由45km扩展至超过80km。本文还使用自适应调制技术实现了速率大于32Gb/s、功率预算超过32dB的LR-PON系统。 A novel long reach passive optical networks(LR-PON)with high power budget and high capacity is investigated.Based on self-phase modulation(SPM)induced negative chirp and super-Nyquist image induced aliasing,diversity is firstly introduced to the aliased components using the first-order superNyquist image.Then fractional sampling and per-subcarrier maximum ratio combining(MRC)are adopted to harvest the diversity gain.Simulation and experimental results show that,using our proposed scheme,the transmission length of a 10 GHz bandwidth QPSK modulated orthogonal frequency-division multiplexing(OFDM)signal can be extended from 45 km to more than 80 km without any forbidden area.It is also shown that with adaptive modulation,the proposed LR-PON system has a data rate of more than 32Gb/s and a power budget of larger than 32 dB.
作者 郭昌建 郑毅成 梁家伟 洪学智 李榕 Guo Changjian Zheng Yicheng Liang Jiawei Hong Xuezhi Li Rong(South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China School of Physics and Telecommunication Engineering, South China Normal Univesity, Guangzhou, 510006, China)
出处 《数据采集与处理》 CSCD 北大核心 2017年第2期330-336,共7页 Journal of Data Acquisition and Processing
基金 国家自然科学基金青年基金(61307090)资助项目 广东省自然科学基金(2014A030313430)资助项目 广东省引进创新科研团队(201001D0104799318)资助项目
关键词 超奈奎斯特镜像 光正交频分复用 自相位调制 super-Nyquist image optical orthogonal frequency-division multiplexing(OFDM) self-phase modulation
  • 相关文献

参考文献1

二级参考文献30

  • 1Yang Q. Experimental demonstration of Tb/s optical transport network based on CO-OFDM superchannel with heterogeneous ROADM nodes supporting sin- gle-fiber bidirectional communications [C] // 37th Optical Fiber Communication Conference. Los An- geles:[s, n. ].2012.. JTh2A .
  • 2You S, Li C, Yang Q, et al. Seamless sub-band wavelength conversion of Tb/s-elass CO-OFDM su- perchannels[J]. IEEE Photon Tech Lett, 2014, 1: 801-804.
  • 3BenM'SallemY,Park C, LaRochelleS. Efficient, wlde- ly-tunable wavelength conversion for packets with in- band labels[J]. IEEE Photon Tech Lett, 2013, 25: 2470-2473.
  • 4Zheng Z N, Ding R, Zhang F, et al. 1. 76Tb/s Nyquist PDM 16QAM signal transmission over 714kin SSMF with the modified SCFDE technique [J]. Opt Express,2013, 21:17505-17511.
  • 5Reis J D, ShahpariA, Ferreira R, et al. Terabit+ (192 x 10 Gb/s) nyquist shaped uDWDM coherent PON with upstream and downstream over a 12.8 nm band[J]. J Lightwave Technol ,2014, 32:729-735 .
  • 6Schroder J, Du L, Carpenter J, et al. All-optical OFDM with cyclic prefix insertion using flexible wavelength selective switch optical processing [J]. J Lightwave Technol, 2014, 32 : 752-759.
  • 7WaveshaperUsers Manual, Revision G/2013, ht- tp://www, finisar, com/sites/default/files/pdf/Wav- eShaper_User_Manual_VersionG, pdf,2013-9-1.
  • 8Notomi M, Kuramochi E, Tanabe T. Large-scale ar- rays of ultrahigh-Q coupled nanocavities[J]. Nature Photonics, 2008, 2 :741-747.
  • 9Khan M H, Shen H, Xuan Y, et al. Ultrabroad- bandwidth arbitrary radio frequency waveform gener- ation with a silicon photonic chip-based spectral shap- er[J]. Nature Photonics, 2010,4 : 117-130.
  • 10Tan S S, Xiang L, Zou J H,et al. High-order all-op- tical differential equation solver based on microring resonators[J]. Opt Letters, 2013, 38..3735-3738.

同被引文献32

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部