期刊文献+

Oxidative stress affects retinal pigment epithelial cell survival through epidermal growth factor receptor/AKT signaling pathway 被引量:8

Oxidative stress affects retinal pigment epithelial cell survival through epidermal growth factor receptor/AKT signaling pathway
下载PDF
导出
摘要 AIM:To investigate the cross-talk between oxidative stress and the epidermal growth factor receptor(EGFR)/AKT signaling pathway in retinal pigment epithelial( RPE) cells.METHODS:Human RPE cell lines(ARPE-19 cell) were treated with different doses of epidermal growth factor(EGF) and hydrogen peroxide(H2O2).Cell viability was determined by a methyl thiazolyl tetrazolium assay.Cell proliferation was examined by a bromodeoxyuridine(Brd U) incorporation assay.EGFR/AKT signaling was detected by Western blot.EGFR localization was also detected by immunofluorescence.In addition,EGFR/AKT signaling was intervened upon by EGFR inhibitor(erlotinib),PI3 K inhibitor(A66) and AKT inhibitor(MK-2206),respectively.H2O2-induced oxidative stress was blocked by antioxidant N-acetylcysteine(NAC).RESULTS:EGF treatment increased ARPE-19 cell viabili ty and proliferation through inducing phosphorylation of EGFR and AKT.H2O2 inhibited ARPE-19 cell viability and proliferation and also suppressed EGF-stimulated increase of RPE cell viability and proliferation by affecting the EGFR/AKT signaling pathway.EGFR inhibitor erlotinib blocked EGF-induced phosphorylation of EGFR and AKT,while A66 and MK-2206 only blocked EGF-induced phosphorylation of AKT.EGF-induced phosphorylation andendocytosis of EGFR were also affected by H2O2 treatment.In addition,antioxidant NAC attenuated H2O2-induced inhibition of ARPE-19 cell viability through all eviating reduction of EGFR,and phosphorylated and total AKT proteins.CONCLUSION:Oxidative stress affects RPE cell viability and proliferation through interfering with the EGFR/AKT signaling pathway.The EGFR/AKT signaling pathway may be an important target in oxidative stress-induced RPE cell dysfunction. AIM:To investigate the cross-talk between oxidative stress and the epidermal growth factor receptor(EGFR)/AKT signaling pathway in retinal pigment epithelial( RPE) cells.METHODS:Human RPE cell lines(ARPE-19 cell) were treated with different doses of epidermal growth factor(EGF) and hydrogen peroxide(H2O2).Cell viability was determined by a methyl thiazolyl tetrazolium assay.Cell proliferation was examined by a bromodeoxyuridine(Brd U) incorporation assay.EGFR/AKT signaling was detected by Western blot.EGFR localization was also detected by immunofluorescence.In addition,EGFR/AKT signaling was intervened upon by EGFR inhibitor(erlotinib),PI3 K inhibitor(A66) and AKT inhibitor(MK-2206),respectively.H2O2-induced oxidative stress was blocked by antioxidant N-acetylcysteine(NAC).RESULTS:EGF treatment increased ARPE-19 cell viabili ty and proliferation through inducing phosphorylation of EGFR and AKT.H2O2 inhibited ARPE-19 cell viability and proliferation and also suppressed EGF-stimulated increase of RPE cell viability and proliferation by affecting the EGFR/AKT signaling pathway.EGFR inhibitor erlotinib blocked EGF-induced phosphorylation of EGFR and AKT,while A66 and MK-2206 only blocked EGF-induced phosphorylation of AKT.EGF-induced phosphorylation andendocytosis of EGFR were also affected by H2O2 treatment.In addition,antioxidant NAC attenuated H2O2-induced inhibition of ARPE-19 cell viability through all eviating reduction of EGFR,and phosphorylated and total AKT proteins.CONCLUSION:Oxidative stress affects RPE cell viability and proliferation through interfering with the EGFR/AKT signaling pathway.The EGFR/AKT signaling pathway may be an important target in oxidative stress-induced RPE cell dysfunction.
出处 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2017年第4期507-514,共8页 国际眼科杂志(英文版)
基金 Supported by the National Natural Science Foundation of China(N o.81570875 No.31170685) the China Postdoctoral Science Foundation Funded Project(No.2015M582044) the Health Systems Young Personnel Training Projects Foundation of Fujian Province,China(No.2013-ZQN-JC-37) the Science and Technology Program Foundation of Xiamen City in China(No.3502720144044) the Scientific Research Foundation of the State Human Resource Ministry the Scientific Research Staring Foundation for the Returned Overseas Chinese Scholars,Ministry of Education of China
关键词 oxidative stress epidermal growth factor receptor AKT retinal pigment epithelial cell oxidative stress epidermal growth factor receptor AKT retinal pigment epithelial cell
  • 相关文献

同被引文献26

引证文献8

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部