期刊文献+

基于全局最优局部加权学习算法的船舶操纵运动辨识 被引量:1

Global-Optimal-Based Locally Weighted Learning for Ship Maneuvering Motion Identification
下载PDF
导出
摘要 运用一种基于全局最优的局部加权学习(Locally Weighted Learning,LWL)算法进行船舶操纵运动辨识建模。该方法是一种基于计算机存储的离线学习的黑箱建模方法,直接考虑船舶运动状态输入与输出之间的映射关系,可克服传统机理建模及参数辨识模型中存在的参数漂移问题和未建模动态问题。对样本点进行重新排列并提高输入空间的维度,解决船舶运动状态一对多映射和不可分问题。通过学习"Mariner"轮的三自由度数学模型,并进行旋回试验、Z形试验及逆螺旋试验,验证算法的有效性。 Global-optimal-based Locally Weighted Learning (LWL) algorithm is applied to ship maneuvering motion identification modeling. LWL as a black box off-line modeling algorithm based on the computer memory, makes directly mapping between input and output of the ship motion states, therefore, eliminates the problems caused by parameter drifting and unmodeled dynamics, which exist in the mechanism modeling and parameter identification modeling. One-to-many mapping and inseparability of ship motion states are dealt with by sample rearrangement and raising the input dimension. The effectiveness of the algorithm is illustrated with learning a 3-D Mariner class vessel mathematical model then performing several maneuvering simulations, including: turning tests, zig-zag tests and reverse spiral tests.
出处 《中国航海》 CSCD 北大核心 2017年第1期37-41,共5页 Navigation of China
基金 国家高技术研究发展计划(八六三计划)课题(2015AA016404) 国家自然科学基金(51109020) 交通运输部应用基础研究项目(20143292-25370) 海洋公益性行业科研专项经费项目(201505017-4)
关键词 水路运输 全局最优 局部加权学习 辨识 船舶操纵性 waterway transportation global optimal LWL identification ship maneuverability
  • 相关文献

参考文献2

二级参考文献22

  • 1刘宇宏,胡甚平.基于数据融合的单目标船避碰评估系统[J].中国航海,2005,28(4):40-45. 被引量:3
  • 2卢炎生,查志勇,潘鹏.一种改进的移动对象时空数据模型[J].华中科技大学学报(自然科学版),2006,34(8):32-35. 被引量:3
  • 3International Telecommunication Union. Technical Char- acteristics for an Automatic Identification System Using Time-Division Multiple Access in the VHF Maritime Mo- bile Band[ S]. 2010.
  • 4胡勤友.上海港重要水域水上交通实时安全指数研究[R].上海:上海海事大学,2012.
  • 5PERERA L P, OLIVEIRA P, GUEDES S C. Maritime Traffic Monitoring Based on Vessel Detection, Tracking, State Estimation, and Trajectory Prediction [ J ]. Intelli- gent Transportation Systems, 2012 ( 13 ) : 1188-1200.
  • 6YU B,KIM S H, BAILEY T, et al. Curve-Based Repre- sentation of Moving Object Trajectories[J]. IEEE Inter- national Database Engineering and Applications Symposi- um,2004:419-425.
  • 7YU B, KIM S H. Interpolating and Using Most Likely Trajectories in Moving-Objects Databases [ C 1. Data- base and Expert Systems Applications ,2006.
  • 8PACHECO R R, HOUNSELL M S, ROSSO R S U, et al. Smooth Trajectory Tracking Interpolation on a Robot Simulator [ C ]. Robotics Symposium and Intelligent Ro- botic Meeting (LARS),2010.
  • 9LIU Z, ZHAO J, ZHANG L, et al. Realization of Mobile Robot Trajectory Tracking Control Based on Interpolation [ C ]. International Symposium on IEEE, 2009.
  • 10Lingzhi S, Xinping Y, Zhe M, et al. Restoring Method of Vessel Track Based on AIS Information [ C ]. 11 th In- ternational Symposium on IEEE, 2012.

共引文献12

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部