期刊文献+

内蒙古某贫磁铁矿石高压辊磨——磁选预选试验 被引量:5

HPGR Crushing-Magnetic Separation Discarding Experiment on a Low Grade Magnetite Ore in Inner Mongolia
下载PDF
导出
摘要 内蒙古某贫磁铁矿石为含磁铁矿石英岩,矿石铁品位为34.21%,杂质成分主要为Si O2。矿石中铁主要以磁铁矿形式存在,铁在磁铁矿中分布率为57.94%,其次为硅酸铁,占总铁的21.25%。为给该矿石的合理预选工艺提供参考,进行了高压辊磨—磁选预选抛尾试验。结果表明:破碎至-30 mm矿石经高压辊磨闭路破碎至-3 mm后湿式预选指标优于高压辊磨闭路破碎至-5 mm后干式预选指标,-3 mm产品在磁场强度为151.27 k A/m条件下弱磁选,获得的预选精矿铁品位为43.02%、回收率为83.21%,磁性铁品位为29.81%、回收率为99.17%,可抛除产率为33.79%的废石。矿石可磨度对比试验结果表明,在获得相同的磨矿细度时,高压辊磨破碎后矿石所需要的磨矿时间更短,且高压辊磨破碎粒度越细,矿石的可磨度越好。 A lean magnetite ore in Inner Mongolia is magnetite-bearing quartzite, iron ore grade is 34. 21%, impurity components mainly for SiO2. Iron mainly exists in form of magnetite ore and iron distribution rate in magnetiteis 57.94%, followed by iron silicate,accounted for 21.25% of total iron. To provide the reference for reasonable preseparation process,high pressure grinding roller-magnetic preseparation test was conducted. Results indicated that, conventional ground to -30 mm ores by HPRG closed-circuit crushing to -3 mm and wet preconcentrate index is better than that of HPRG closed-circuit crushing to -5 mm and dry preconcentrate index,-3 mm products with magnetic field intensity of 151.27 kA/m low intensity magnetic separation, preconcentrate with iron grade of 43.02% , recovery rate was 83.21%, magnetic iron grade of 29. 81% and recovery was 29.81% ,discarding waste rock with yield of 33.79%. Grindability comparison test results show that,to get same grinding fineness, HPRG crushing products need shorter grinding time, and the finer the HPRG products, the better is ore granularity.
出处 《金属矿山》 CAS 北大核心 2017年第4期56-59,共4页 Metal Mine
基金 内蒙古自然科学基金项目(编号:2014MS0521) 内蒙古科技大学产学研基金项目(编号:PY-201516)
关键词 高压辊磨 贫磁铁矿 预选 可磨性 High pressure grinding roller, Lean magnetite ore, Preconcentration, Grindability
  • 相关文献

参考文献7

二级参考文献49

  • 1易南概,徐小荷.粉碎方式对金矿石氰化浸出效果影响的实验研究[J].黄金,1996,17(1):32-35. 被引量:7
  • 2Zhitao Yuan,Lei Liu,Yuexin Han. Wet Pre-concentration of Low-grade Hematite in High-pressure Grinding Roller[J].Current Advances in Materials and Processes,2012.363-368.
  • 3Norgate T E,Weller K R. Selection and operation of high pressure grinding rolls circuits for minimum energy consumption[J].Minerals Engineering,1994,(07):1253-1267.
  • 4Wasmuth H D,Unkelbach KH. Recent developments in magnetic separation of feebly magnetic minerals[J].Minerals Engineering,1991,(7-11):825-837.
  • 5Arvidson B R,Henderson D. Rare-earth magnetic separation equipment and application developments[J].Minerals Engineering,1997,(02):127-137.
  • 6Phanindra Kodali,Nikhil Dhawan,Tolga Depci,C.L. Lin,Jan D. Miller.Particle damage and exposure analysis in HPGR crushing of selected copper ores for column leaching[J].Minerals Engineering.2011(13)
  • 7Nam?k A. Aydo?an,Hakan Benzer.Comparison of the overall circuit performance in the cement industry: High compression milling vs. ball milling technology[J].Minerals Engineering.2010(3)
  • 8Hakan Benzer,Nam?k A. Aydogan,Hakan Dündar.Investigation of the breakage of hard and soft components under high compression: HPGR application[J].Minerals Engineering.2010(3)
  • 9Okay Altun,Hakan Benzer,Hakan Dundar,Nam?k A. Aydogan.Comparison of open and closed circuit HPGR application on dry grinding circuit performance[J].Minerals Engineering.2010(3)
  • 10F.P. van der Meer,A. Gruendken.Flowsheet considerations for optimal use of high pressure grinding rolls[J].Minerals Engineering.2009(9)

共引文献98

同被引文献40

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部