期刊文献+

尾迹作用下叶片表面非定常传热特性的数值分析 被引量:2

Numerical Analysis of Heat Transfer Characteristics on Turbine Blade Surface Under the Action of Unsteady Wakes
下载PDF
导出
摘要 基于非定常RANS方程,采用尺度自适应湍流模型,模拟分析了某透平级的非定常流动与传热,研究在不同尾缘冷气射流条件下上游静叶尾迹结构的变化及其对下游动叶表面传热的影响.结果表明:导叶尾缘冷气射流对动叶表面传热的作用主要来自湍动能尾迹的传播,动叶压力面后部的时均表面传热系数提升约20%,但是动叶吸力面传热的时均值基本没有受到影响;带有冷气射流的尾迹给下游带来的扰动强度与范围更大,下游叶片表面的传热幅值波动加剧,这一特征随着冷气射流的动量比与速度比的增大而增强,动量比为1时,波动幅值相较无冷气射流工况时提高1倍. A simulation analysis was conducted on the unsteady flow and heat transfer of a gas turbine stage based on unsteady RANS equations and scale-adaptive turbulent model, so as to study the wake structure of upstream stator blade and analyze its influence on the heat transfer over downstream blade surface under different effects of trailing edge coolant ejection. Results show that the effects of trailing edge coolant ejec- tion on the heat transfer over rotor blade surface mainly come from the spreading of turbulent kinetic ener- gy wake, which increases the time-averaged Nusselt number by about 20% for the rear part of pressure surface, while its impact on suction surface can be neglected. The wake with coolant ejection enhances the intensity and scope of disturbance in downstream areas, and increases the amplitude fluctuation of down- stream blade surface heat transfer. This feature becomes more obvious with the rise of momentum ratio and velocity of coolant ejection; for the momentum ratio of 1, the fluctuation in amplitude would be twice of that without trailing edge coolant ejection.
出处 《动力工程学报》 CAS CSCD 北大核心 2017年第5期361-366,385,共7页 Journal of Chinese Society of Power Engineering
基金 国家自然科学基金资助项目(51276116)
关键词 燃气透平 尾缘劈缝 尾迹 非定常传热 叶片表面 gas turbine trailing edge cutback wake unsteady heat transfer blade surface heat transfer
  • 相关文献

参考文献3

二级参考文献15

  • 1马铁犹.计算流体力学[M].北京:北京航空学院出版社,1983..
  • 2姜正礼.后缘喷气对叶栅性能影响试验报告[M].四川:中国燃气涡轮研究院,1996..
  • 3S Ou, J -C Han, A B Mehendale. Unsteady Wake over a Linear Turbine Blade Cascade with Air and CO2 Film Injection: Part Ⅱ-Effect on Film Effectiveness and Heat Transfer Distribution. Journal of Turbomachinery, 1994,116(10): 730-737.
  • 4Vijay K Garg, Ali A Ameri. Comparison of TwoEquation Turbulence Models For Prediction of Heat Transfer on Film-Cooled Turbine Blades. Numerical Heat Transfer, Part A, 1997, 31(3): 347-371.
  • 5P Ginibre, M lefebvre N Liamis. Numerical Investigation of Heat Transfer on Film-Cooled Turbine Blades. Annals of the New York Academy of Science, 2001, 934:377-384.
  • 6SATOSHI H. Test results of the world's first 1600 ℃ J series gas turbine [J]. Mitsubishi Heavy Industries Technical Review, 2012, 49 ( 1 ) : 1 8-23.
  • 7MASANORI Y. Development of 1 600 class high effi- ciency gas turbine for power generation applying J-type technologyEJ_. Mitsubishi Heavy Industries Technical Review, 2013,50(3) : 1-10.
  • 8LANGSTON I. S. Crossflow in a turbine cascade pas sage[J]. Journal of Engineering for Power, 1980,102: 866-874.
  • 9SIEVERDING C H. Recent progress in the trader standing of basic aspects of secondary flows m turbine blade passage[J]. ASME Journal of Engineering for Gas Turbines & Power, 1985, 107(2) :248-257.
  • 10WANG H P, OLSON S J, GOLDSTEIN R J, et al. Flow visualization in a linear turbine cascade of high performance turbine blade[J]. ASME Journal of Tur- bomaehinery, 1997, 119(1):1-8.

共引文献29

同被引文献8

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部