期刊文献+

SIFT算法优化及其在遥感影像配准中的应用 被引量:8

Improved SIFT Algorithm and Its Application in Registration of Remotely Sensed Imagery
下载PDF
导出
摘要 针对传统尺度不变特征转换(scale invariant feature transform,SIFT)方法在处理存在角度偏差的图像配准数据时得到的配准点对数量低以及配准精度不高的问题,提出一种基于多角度归一化互相关法优化的SIFT遥感图像配准方法。以相关性系数为标准确定图像最佳配准位置,进行角度校正;用SIFT算法进行特征提取和特征匹配,并结合随机抽样一致性算法(random sample consensus,RANSAC),剔除错误配准点,以提高配准精度。实验表明,该实验配准方法比单一的SIFT配准方法得到数量更多且精度更高的特征点对,结果显示SIFT配准点对数量平均提高24.5倍,RANSAC算法确定的正确配准点对平均调高86.8倍。 An improved Scale Invariant Feature Transform(SIFT)automatic registration of high-spatial resolution remote sensing images based on multi-angle Normalized Cross Correlation(NCC)is proposed in this paper to solve theproblem that the traditional SIFT method has low registration point and low registration accuracy when dealing with the image registration data with angle deviation.Fristly,determine the best image registration position based on correlation coefficient,and complete the rotation offset correction.Then,SIFT is used to extract the feature points and feature matching,which is subsequently refined by Random Sample Consensus(RANSAC)to eliminate the mismatched control points.Experimental results indicated that this registration method gives higher precision matched points than simple SIFT and the number of points average increasing 24.5times,and the refined points by RANSAC average increasing 86.8times.
出处 《遥感信息》 CSCD 北大核心 2017年第2期94-98,共5页 Remote Sensing Information
基金 国家科技支撑项目(2015BAB05B05-2) 国家测绘地理信息局数字制图与国土信息应用工程重点实验室开发基金(GCWD201401) 中国科学院百人计划项目(Y34005101A)
关键词 影像配准 尺度不变特征转换 归一化互相关法 随机抽样一致性算法 角度偏差 image registration sift normalized cross correlation RANSAC angle deviation
  • 相关文献

参考文献3

二级参考文献18

  • 1韩玲,吴汉宁.多源遥感影像数据融合的理论与技术[J].西北大学学报(自然科学版),2004,34(4):457-460. 被引量:20
  • 2舒丽霞,周成平,彭晓明,丁明跃.基于Hausdorff距离图象配准方法研究[J].中国图象图形学报(A辑),2003,8(12):1412-1417. 被引量:27
  • 3袁贞明,吴飞,庄越挺.基于视觉特征的多传感器图像配准[J].中国图象图形学报,2005,10(6):767-772. 被引量:4
  • 4王成儒,赵娜,张丽丽.基于三角形几何相似性的图像配准与拼接[J].光电工程,2007,34(8):87-92. 被引量:9
  • 5Wu Q,Whitman G J,Fussell D S,et al. Registration of DCE MR images for computer-aided diagnosis of breast cancer[C]//Fortieth Asilomar Conference on Signal, Systems and Computers. Pacific Grove: IEEE Signal Processing Society, 2006: 826 - 830.
  • 6Pan W H, Wei S D, Lai S H. A hybrid motion estimation approach based on normalized cross correlation for video compression[C]//IEEE International Conference on Acoustics, Speech and Signal Processing. Las Vegas: IEEE Signal Processing Society, 2008 :1037 - 1040.
  • 7PaclikP, Novovicova J, Duin R P W. Building Road-Sign classifiers using a trainable similarity measure [J]. IEEE Transactions on Intelligent Transportation Systems, 2006, 7 (3) :309.
  • 8Lewis J P. Fast template matching[J]. Vision Interface, 1995, 95:120.
  • 9Tsai D M, Lin C. Fast normalized cross correlation for defect detection[J]. Pattern Recognition Letters, 2003,24 (15) : 2625.
  • 10Hii A J H,Hann C E, Chase J G, et al. Fast normalized cross correlation for motion tracking using basis functions[J].Computer Methods and Programs in Biomedicine, 2006, 82 (2) :144.

共引文献40

同被引文献59

引证文献8

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部