期刊文献+

分簇算法与压缩感知下的农田信息处理

Farmland Information Processing Based on Clustering Algorithm and Compressed Sensing
下载PDF
导出
摘要 为了减小无线传感器传输数据的数据量,提出了一种相关性分簇算法与压缩感知相结合的方法。首先,将节点数据显著相关性的节点划分到一个簇中;其次,在每个簇中,根据节点间的平均相关度大小来确定参考节点与非参考节点,参考点的数据结合压缩感知进行无线网络传输,而非参考点的数据可以根据与参考节点的线性回归系数计算出来;最后,对实测的温度进行仿真实验。结果表明,簇中参考节点的数据重构误差在允许范围内,对非参考节点进行线性回归计算与原始数据相比基本吻合。 In order to reduce combining with Correlation the amount of data of wireless sensor data, this paper propose a method Clustering Algorithm and compressed sensing. First, the nodes which are significantly correlated with the node data are divided into a cluster. Then, the average correlation de- gree can determine the reference node and the non reference node in each cluster, and the data of the reference node can transfer for wireless network combining with compressed sensing, while the data of the non reference node can be calculated according to the linear regression coefficient of the reference node. For simulation experiment of the measured temperature, it is proved that the data reconstruction error of the reference node in the cluster is in the allowable range, and the linear regression calcula- tion of the non reference node is basically consistent with the original data.
出处 《合肥学院学报(综合版)》 2017年第2期41-46,共6页 Journal of Hefei University:Comprehensive ED
基金 国家自然基金项目(31671589)资助
关键词 无线传感器 分簇 平均相关度 线性回归 压缩感知 wireless sensor clustering algorithm average correlation degree linear regression com-pressed sensing
  • 相关文献

参考文献8

二级参考文献92

  • 1包长春,石瑞珍,马玉泉,刘荣昌,伦翠芬,王庆祝,刘士光.基于ZigBee技术的农业设施测控系统的设计[J].农业工程学报,2007,23(8):160-164. 被引量:95
  • 2DONOHO D L. Compressed sensing [ J ]. IEEE Trans, onInformation Theory,2006,52(4) : 1289-1306.
  • 3CANDfiS E J. Compressive sampling [ C ]. InternationalCongress of Mathematicians,European Mathematical So-ciety Publishing House, Madrid, Spain ,2006 : 1433-1452.
  • 4CHEN W, WASSELL I J. Energy-efficient signal acquisitionin wireless sensor networks: A compressive sensing frame-work[J]. IET Wireless Sensor Systems,2012,2(1) :1-8.
  • 5FANG L,LI S T,NIE Q. Sparsity based denoising of spec-tral domain optical coherence tomography images [ J ].Biomedical Optics Express,2012,3(5) :927-942.
  • 6SUN X L,YU AN X,D0NG ZH’et al. Three-dimensionalSAR focusing via compressive sensing ; The case study ofangel stadium[ J ] . IEEE Geoscience and Remote SensingLetters,2012,9(4) :759-763.
  • 7CANDES E J, ROMBERG J,TA0 T. Robust uncertaintyprinciples: Exact signal reconstruction from highly incom-plete frequency information[ J]. IEEE Trans, on Informa-tion Theory,2006,52 (2) :489-509.
  • 8RONALD A, DEVORE. Deterministic constructions ofcompressed sensing matrices [ J ]. Journal of Complexity,2007,23(4) :918-925.
  • 9DO T T,TRAN T D,LU GAN. Fast compressive samplingwith structurally random matrices [ J]. IEEE InternationalConference Agouties,Speech and Signal Processing,Washington D. C.,USA,2008 :3369-3372.
  • 10HAUPT J, BAJWA W U, RAZ G,et al. Toeplitz com-pressed sensing matrices with applications to sparsechannel estimation[ J]. IEEE Trans, on Information The-ory,2010,56( 11 ) :5862-5875.

共引文献116

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部