期刊文献+

一类常微分方程边值问题的格林函数的讨论

Discussion on Green Function for a Class of Boundary Value Problems of Ordinary Differential Equations
下载PDF
导出
摘要 为了研究方便,通常应用格林函数将微分方程转化为与其等价的积分方程。通过常数变易法研究了一类三阶常微分方程在一类边值条件下的格林函数求法,也给出了另一类边值条件下微分方程的格林函数表达式,最后给出了一些上述方程求解格林函数的实例。 In order to study conveniently, the differential equation is transformed into its equivalent integral e- quation by using Green~ function. The Green function for a third - order ordinary differential equation with a boundary condition was studied by the method of variation of constant. The expression of the Green function for other boundary condition was also given. Finally some examples of Green function were provided for boundary value problems of ordinary differential equations.
作者 马慧
出处 《湖北理工学院学报》 2017年第2期50-53,共4页 Journal of Hubei Polytechnic University
关键词 格林函数 边值问题 三阶常微分方程 Green function boundary value problem third -order ordinary differential equation
  • 相关文献

参考文献2

二级参考文献12

  • 1Bai Zhanbing, Ge Weigao. Existence of Three Positive Solutions for Some Second-Order Boundary Value Problems [ J ]. Computers and Mathematics with Applications ,2004,48:699 - 707.
  • 2Ma Ruyun, Thompson Bevan. Global behavior of positive solutions of nonlinear three-point boundary value problems [ J ]. Nonlinear Analysis ,2005,60:685 - 701.
  • 3Li Fuyi, Zhang Qi, Liang Zhanping. Existence and multiplicity of solutions of a kind of fourth-order boundary value problem[ J ]. Nonlinear Analysis ,2005,62:803 - 816.
  • 4Im Bong Hak, Lee Eun Kyoung, Lee Yong-Hoon. A global bifurcation phenomenon for second order singular boundary value problems [ J ]. J Math. Anal. Appl. ,2005,308 : 61 - 78.
  • 5Pokomyi Yu V, Borovskikh A V. the connection of the green's function and the influence function for nonclassical problems[ J]. Journal of Mathematical Sciences, 2004,119 (6) :739 - 768.
  • 6Ren Jingli, Ge Weigao. Positive Solition Boundary Value Sign Changing for Three-Point Problems with Nonlinearities [ J ]. AppliedMathematics Letters ,2004,17:451 - 458.
  • 7Liu Bing. Positive solutions of a nonlinear four-point boundary value problems [ J ]. Applied Mathematics and Computation,2004, 155 : 179 - 203.
  • 8Cheung Wing-Sum, Ren Jingli. Positive solution for m-point boundary value problems [ J ]. Math. Anal. Appl. , 2005,303:565 - 575.
  • 9Guo Dajun, Lakshmikantham V. Nonlinear Problems in Abstract Cones [ M ]. Academic Press, Boston, 1988.
  • 10Liu Yansheng, Yu Huimin. Existence and Uniqueness of Positive Solution for Singular Boundary Value Problem [ J ]. Computers and Mathematms with Applications,2005,50:133 -143.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部