期刊文献+

基于霍夫变换的可见光虹膜图像定位 被引量:4

Iris Localization for Visible-light Images Based on Hough Transform
下载PDF
导出
摘要 虹膜定位是虹膜识别中的关键步骤,而非理想条件下的可见光虹膜图像定位算法则是近年来的研究热点。为了提高虹膜定位的精度,提出了一种基于霍夫变换的可见光虹膜图像定位算法,分析并确定了先定位虹膜外边界、再定位内边界的顺序,以提高边界定位准确度;针对外边界定位存在的问题,利用可见光虹膜图像颜色分布的先验信息,进行了边缘检测与筛选,提高了定位的速度与准确度;在此基础上,借助瞳孔和虹膜的位置关系指导虹膜内边界定位,进行了高光噪声检测与去除,采用基于距离约束的霍夫变换,排除噪声影响和减少计算时间。实验结果表明,该算法具有较高的定位准确度,并且能处理诸如严重遮挡、成像模糊、区域对比度低、虹膜纹理与隐形眼镜等干扰情况下的虹膜图像。 As a crucial step in iris recognition, the iris localization algorithms, especially those dealing with iris images taken in visible- light under non-ideal imaging conditions have received increasing attention recently. A localization algorithm for visible-light iris images has been proposed to enhance the accuracy of iris localization. The strategy of localizing limbic boundary has been determined which is carded out from out boundary to inner verge of iris to promote the accuracy of boundary location. To solve the problem in localizing lim- bic boundary, the prior of color distribution has been utilized to remove the noise in the edge map of the iris image for increase of the ac- curacy and speed of limbic boundary localization. Therefore, the relevance between center positions of iris and pupil has been utilized to instruct the pupil boundary localization and the reflections in pupil region have been detected and removed with Hough transform on dis- tance limitation to eliminate the noise effects and to reduce computation time via estimation of the pupil radius and center. Experimental results demonstrate that the localization accuracy of the proposed method is higher than traditional methods and has more capabilities such as dealing with iris images with occlusion, blur imaging, low contrast and interfering texture.
出处 《计算机技术与发展》 2017年第5期40-45,共6页 Computer Technology and Development
基金 国家中医药管理局中医药信息学重点学科建设项目 国家中医药管理局中医眼科学重点学科建设项目 国家重点学科中医诊断学开放基金(2013ZYZD08) 2013年湖南省高校创新平台开放基金(13K076)
关键词 虹膜定位 可见光虹膜图像 颜色分布先验 霍夫变换 iris localization visible-light iris images prior of color distribution Hough transform
  • 相关文献

参考文献3

二级参考文献26

  • 1胡正平.基于多尺度-局部方向轮廓综合的鲁棒虹膜定位算法[J].电子学报,2007,35(1):131-134. 被引量:4
  • 2冈萨雷斯.数字图像处理[M].2版.北京:电子工业出版社,2008.
  • 3S A C Schuckers, N A Schmid, A Abhyankar, et al. On techniques for angle compensation in nonideal iris recognition[J].IEEE Trans on System, Man, and Cybernetics, 2007, 37 ( 5 ) : 1176- 1190.
  • 4Z Niu, S Shan, S Yan,X Chen, et al.2D cascaded adaBoost for eye localization[A ]. IEEE Int. Conf. on Pattern Recognition[C]. Hong Kong,2006.1216 - 1219.
  • 5R Halif, J Flusser. Numerically stable direct least squares fitring of ellipses[ A]. Proceedings of the 6th International Conference in Central Europe on Computer Graphics and Visualization[ C]. WSCG, 1998.125 - 132.
  • 6John Daugman. How iris recognition works[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2004, 14 (1) :21 - 30.
  • 7Frederick W Wheeler, A G Amitha Perera, et al. Stand-off iris recognition system [ A ]. Proc. of IEEE Second International Conference on Biometrics: Theory, Applications and Systems [ C]. Washington DC,2008.1 - 7.
  • 8James R Matey, Keith Hanna, et al. Iris on the move: Acquisition of images for iris recognition in less constrained environments [ J ]. Proceedings of the IEEE, 2006, 94 ( 11 ) : 1936 - 1947.
  • 9S J Pundlik,D L Woodard,S T Birchfield. Non-ideal iris segmentation using graph cuts [A] .IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops [C]. Alaska,2008.1 - 6.
  • 10Z 2]aou, Y Du, C Belcher. Transforming traditional iris recognition systems to work on non-ideal situations[J]. 1EEE Trans on Industry Electronics, 2009,56 (8) : 3203 - 3213.

共引文献7

同被引文献33

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部