摘要
提出了一种提升露天矿边坡位移量预测精度和收敛速度的基于自适应混合跳跃粒子群算法(AHJPSO)改进的BP(Back Propagation)神经网络模型。传统的BP神经网络模型在位移量预测过程中存在收敛速度慢、预测精度低、易陷入局部极小值的问题,而自适应混合跳跃粒子群算法具有快速寻优能力以及能够在迭代计算的过程中有效避免陷入局部极小值的能力,所以采用自适应混合跳跃粒子群算法优化后的BP神经网络模型,能够使BP神经网络模型对露天矿边坡位移量的预测精度更高、算法收敛速度更快,并有效跳出局部极小值。
It is proposed in the paper that a BP neural network model based on adaptive hybrid jump PSOalgorithm, which can pro-mote forecasting precision and convergence speed of displacement of the open pit mine slope. The traditional BP neural network modelis of slow convergence rate, low prediction accuracy and easy to fall into local minimum in the processing of displacement forecasting,while AHJPSO is with the ability to quickly find the best and can be able to effectively avoid the local minimum value. As a result, a-doption of BP neural network model based on the AHJPSO optimization can make fast convergence rate, high prediction accuracy andis easy to avoid falling into local minimum.
出处
《测绘与空间地理信息》
2017年第4期4-6,11,共4页
Geomatics & Spatial Information Technology
基金
灾害水源直接探测仪器装备研究与应用项目(2011YQ030133)资助