期刊文献+

基于多特征融合与PLSA-GMM的图像自动标注 被引量:6

Image Automatic Annotation Based on Multi-Feature Fusion and PLSA-GMM
下载PDF
导出
摘要 为减少图像检索中图像信息的缺失与语义鸿沟的影响,提出了一种基于多特征融合与PLSA-GMM的图像自动标注方法。首先,提取图像的颜色特征、形状特征和纹理特征,三者融合作为图像的底层特征;然后,基于概率潜在语义分析(PLSA)与高斯混合模型(GMM)建立图像底层特征、视觉语义主题与标注关键词间的联系,并基于该模型实现对图像的自动标注。采用Corel 5k数据库进行验证,实验结果证明了本文方法的有效性。 In order to reduce the impact of semantic gap and lack of image information,a way to improve the image automatic annotation with multi-feature fusion and PLSA-GMM is proposed.Firstly,it is used as the bottom feature of the image with the color feature,shape feature and texture feature of the image.Then,the relation among the low-level feature,the visual semantic topics and the key words is built based on the probabilistic latent semantic analysis(PLSA) and the Gauss mixture model(GMM).Finally,the images can be annotated based on the introduced model.According to test on the widely used database Corel 5 k,the results show that the new scheme gives the better performance.
出处 《测控技术》 CSCD 2017年第4期31-35,39,共6页 Measurement & Control Technology
基金 河南省基础与前沿技术研究项目(132300410462 112300410281)资助
关键词 多特征融合 概率潜在语义分析 高斯混合模型 图像自动标注 multi-feature fusion probabilistic latent semantic analysis Gaussian mixture models automatic image annotation
  • 相关文献

参考文献2

二级参考文献20

  • 1SIDIROPOULOS P, VROCHIDIS S, KOMPATSIARIS I. Content- based binary image retrieval using the adaptive hierarchical density histogram [ J]. Pattern Recognition, 2011, 44(4) : 739 - 750.
  • 2POOJA C S. An effective image retrieval using the fusion of global and local transforms based features[ J]. Optics and Laser Technolo- gy, 2012, 44(7):2249-2259.
  • 3SUBRAHMANYAM M, MAHESHWARI R P, RAI AglRR AM ANI1 AN R. local maximum edge binary patterns: A new descriptor for image retrieval and object tracking [J]. Signal Processing, 2012, 92(6): 1467 - 1479.
  • 4HU R X, JIA W, ZHAO Y, et al. Perceptually motivated morphological strategies for shape retrieval [ J ]. Pattern Recognition, 2012, 45(9):3222-3230.
  • 5WAHAB M H A, HSIEH T M. Image retrieval based on color and texture features [ C ]// Proceedings of the 9th International Conference on Fuzzy Systems and Knowledge Discovery. Washington, DC : IEEE Computer Society, 2012 : 1816 - 1819.
  • 6V1MINA E R, POULOSE JACOB K. Image retrieval using colour and texture features of regions of interest [ C ]// 2012 International Conference on Information Retrieval & Knowledge Management. Washington, DC: IEEE Computer Society, 2012:240 - 243.
  • 7LIN C H, CHEN R T, CHAN Y K. A smart content-based image retrieval system based on color and texture feature [ J ]. Image and Vision Computing, 2009, 27(6) :658 -665.
  • 8LIU G H, ZHANG L, HOU Y K. Image retrieval based on multi- texton histogram[ J]. Pattern Recognition, 2010, 43 (7) :2380 - 2389.
  • 9管致锦,秦小麟,施佺,郑吉平.基于正反控制模型的可逆逻辑综合[J].计算机学报,2008,31(5):835-844. 被引量:10
  • 10李志欣,施智平,李志清,史忠植.图像检索中语义映射方法综述[J].计算机辅助设计与图形学学报,2008,20(8):1085-1096. 被引量:36

共引文献14

同被引文献35

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部