期刊文献+

自适应高阶无迹增量卡尔曼滤波算法 被引量:2

Adaptive High Order Unscented Incremental Kalman Filtering
下载PDF
导出
摘要 在工程实际中,由于环境因素的影响、测量设备的不稳定性、模型和参数的选取不当等往往会对量测方程带来未知的系统误差。针对这一问题,提出了一种自适应高阶无迹增量卡尔曼滤波算法。首先,利用增量建模技术建立增量量测方程。其次,将其与高阶无迹卡尔曼滤波器相结合,并引入自适应加权因子对滤波发散进行抑制,发展出一种自适应增量滤波算法。计算机仿真实验表明,新算法能够成功消除这种未知的系统误差,提高估计精度和稳定性,具备良好的应用前景。 In actual engineering,there usually are unknown system errors to the measurement equation due to the effect of environmental factors,the instability of measurement devices and improper models and parameters.To solve this problem,an adaptive high order unscented incremental Kalman filter is put forward.Firstly,incremental measurement equation is established by incremental modeling technology.Then,combining with high order unscented Kalman filter,an adaptive incremental filtering algorithm is developed by introducing an adaptive weighted factor which can restrain the filtering divergence.Computer simulations show that the proposed algorithm can successfully eliminate the unknown system error.Meanwhile,the novel method can improve the estimation accuracy and stability,and has good application prospect.
作者 张虎龙
出处 《测控技术》 CSCD 2017年第4期40-42,47,共4页 Measurement & Control Technology
关键词 自适应滤波 高阶无迹卡尔曼滤波 增量量测方程 欠观测条件 adaptive filtering high order unscented Kalman filtering incremental measurement equation poor observation condition
  • 相关文献

参考文献7

二级参考文献93

  • 1傅惠民.正态分布百分位值和百分率的置信限和容忍限公式[J].航空学报,1994,15(1):94-101. 被引量:40
  • 2傅惠民.百分回归分析[J].航空学报,1994,15(2):141-148. 被引量:12
  • 3傅惠民.线性异方差回归分析[J].航空学报,1994,15(3):295-302. 被引量:18
  • 4张永强 ,刘琦 ,周经伦 .基于性能退化数据的可靠性评定方法研究[J].飞行器测控学报,2005,24(5):54-58. 被引量:19
  • 5Lu J C,Meeker W Q. Using degradation measures to esti mation a time to-failure distribution[J]. Technometrics, 1993,35(2) :161-174.
  • 6Tseng S T, Hamada M S,Chiao C H. Using degradation data to improve fluorescent lamp reliability[J]. Journal Quality Technology, 1995,27(4) :363-369.
  • 7Meeker M Q,Escobar L A. Statistical methods for reliability data[M]. New York:John Wiley & Sons Inc. ,1998.
  • 8Zehua C, Shurong Z. Lifetime distribution based degrada tion analysis[J]. IEEE Transactions on Reliability, 2005, 54(1):3- 10.
  • 9Tomsky J. Regression models for detecting reliability degradation[C]//Proceedings of the Annual Reliability and Maintainability Conference. New York:Institute of Electrical and Electronics Engineers, 1982 : 238-244.
  • 10Nelson W. Analysis of performance degradation data from accelerated tests [J]. IEEE Transactions on Reliability, 1981,30(2) :149-155.

共引文献175

同被引文献94

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部