摘要
Ning et al. (2015) developed a 2D fully nonlinear potential model to investigate the interaction between focused waves and uniform currents. The effects of uniform current on focusing wave crest, focal time and focal position were given. As its extension, harmonic energy transfer for focused waves in uniform current is studied using the proposed model by Ning et al. (2015) and Fast Fourier Transformation (FFT) technique in this study. It shows that the strong opposing currents, inducing partial wave blocking and reducing the extreme wave crest, make the nonlinear energy transfer non-reversible in the focusing and defocusing processes. The numerical results also provide an explanation to address the shifts of focal points in consideration of the combination effects of wave nonlinearity and current.
Ning et al. (2015) developed a 2D fully nonlinear potential model to investigate the interaction between focused waves and uniform currents. The effects of uniform current on focusing wave crest, focal time and focal position were given. As its extension, harmonic energy transfer for focused waves in uniform current is studied using the proposed model by Ning et al. (2015) and Fast Fourier Transformation (FFT) technique in this study. It shows that the strong opposing currents, inducing partial wave blocking and reducing the extreme wave crest, make the nonlinear energy transfer non-reversible in the focusing and defocusing processes. The numerical results also provide an explanation to address the shifts of focal points in consideration of the combination effects of wave nonlinearity and current.
基金
financially supported by the National Natural Science Foundation of China(Grant Nos.51679036 and 51490672)
the Royal Academy of Engineering under the UK-China Industry Academia Partnership Programme(Grant No.UK-CIAPP\73)
the Program for New Century Excellent Talents in University(Grant No.NCET-13-0076)