期刊文献+

基于天然μ子散射特征评估铀板内水平狭缝宽度的方法

Width evaluation of horizontal slit in uranium slabs using a forward comparison method based on cosmic-ray muon scattering
下载PDF
导出
摘要 针对经典μ子成像方法用于特殊对象结构探测的技术难点,提出了一种通过直接比较对象发生结构变化前后μ子散射特征的差异来进行形变类型和尺度判定的新思路,称为正向参比法。相比于经典的逆向反演法,该方法在原理上对于初始结构已知的特殊核对象的结构变化探测更有优势。从初步模拟结果来看,在合理的天然μ子通量下,该方法可实现铀板内亚毫米尺度水平狭缝的存在及其尺度的准确判定。 Background: Muon tomography based on multiple Coulomb scattering (MCS) has been widely used in structural detection of nuclear objects. However, for some particular objects, the tomographic method would be thwarted by failing to imaging them. Purpose: In view of the technical difficulties in structural detection of those objects, a novel method named "Forward Comparison Method (FCM)" was proposed. Methods: Both the deformation and its scale were identified effectively by directly evaluating the evolution of muon scattering properties with respect to the object. This method, instead of the traditional inverse one, showed a methodological superiority in detection of nuclear objects with prior knowledge of the original structure. Results: Preliminary results based on a computational simulation demonstrated that FCM could be used to identify the horizontal slit in a uranium slab and evaluate its width on the magnitude of sub-millimeters, on condition that the muon flux was reasonable. Conclusion: The FCM method can be effectively applied in structural detection of particular nuclear objects of hollow structure on a satisfactory timescale.
出处 《核技术》 CAS CSCD 北大核心 2017年第5期17-21,共5页 Nuclear Techniques
基金 中国工程物理研究院科学技术发展基金(No.2015B0103014)资助~~
关键词 Μ子 重核材料 多重库仑散射 非参数检验 接受者操作特征分析 Muon, High-Z material, MCS, Non-parametric test, Receiver operating characteristic analysis
  • 相关文献

参考文献1

二级参考文献7

  • 1程泽凯,林士敏,陆玉昌,蒋望东,陆小艺.基于Matlab的贝叶斯分类器实验平台MBNC[J].复旦学报(自然科学版),2004,43(5):729-732. 被引量:27
  • 2杨波,程泽凯,秦锋.用AUC评估分类器的预测性能[J].情报学报,2007,26(2):275-279. 被引量:2
  • 3Fawcett T. Roc Graphs: Notes and Practical Consideratiom for Researchers[ R]. Palo Alto, CA: HP Laboratories, 2004.
  • 4Bradley A P. The use of the area under the ROC curve in the evaluation of machine learning algorithms[J ]. Pattern Recognition Society, 1997,30:1145 - 1159.
  • 5Bohanec M.UCI [DB/OL]. 1997 -06 -01. hrtp://www.its. uci. edu/mleam/MLRepository. Html.
  • 6Provost F, Fawcett T. Analysis and Visualization of Classifier Performance: Comparison Under Imprecise Class and Cost Distributions[C]//In Proe. Third Intl. Conf, Knowledge Discovery and Data Mining (KDD - 97). Menlo Park, CA. AAAI Press, 1997-43 - 48.
  • 7Han J W Kamber M 范明 孟小峰译.数据挖掘概念与技术[M].北京:机械工业出版杜,2001.147-158.

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部