期刊文献+

小型压水堆严重事故下一回路承压管道蠕变预测分析模型开发 被引量:1

Creep analysis model of small PWR plant RCS pipelines under severe accident condition
原文传递
导出
摘要 一回路承压管道蠕变是压水堆核电厂严重事故重要现象之一。针对小型压水堆,本文基于SCDAP/RELAP5程序开发了严重事故分析模型,利用实验拟合方法得到了一回路主管道(SA321)、自然循环式蒸汽发生器传热管(00Cr25Ni35Al Ti)两种材料蠕变预测分析模型,改进了SCDAP/RELAP5程序蠕变预测分析功能模块,并通过假想事故序列验证了SA321、00Cr25Ni35Al Ti蠕变预测分析模型的合理性。为后续开展小型压水堆严重事故下一回路承压管道蠕变规律研究提供基础参考。 Backgroud: The reactor coolant system (RCS) pipelines creep is an important phenomenon during severe accident analysis of pressurized water reactor (PWR) plants. Purpose: This study aims to develop a severe accident analysis model focus on the RCS pipeline creep analysis for small PWR plant. Method: The severe accident analysis model is developed by using the SCDAP/RELAP5 code, the creep prediction formulas of RCS main coolant pipeline (SA321) and natural circulation steam generator tubes (00Cr25Ni35A1Ti) materials are fitted by the experiment data, and the corresponding functions are added to the creep prediction subroutines of the SCDAP/RELAP5 code, which are finally verified by a simulation of supposed severe accident by SCDAP/RELAP5 code. Results: The upgraded SCDAP/RELAP5 code is finally available for the RCS pipelines creep analysis of the small PWR under severe accident condition. Conclusion: This provides a basic reference for the next quantify creep character analysis of the small PWR during the severe accident processes.
出处 《核技术》 CAS CSCD 北大核心 2017年第5期69-74,共6页 Nuclear Techniques
关键词 压水堆 严重事故 蠕变预测 SCDAP/RELAP5程序 PWR, Severe accident, Creep prediction, SCDAP/RELAP5 code
  • 相关文献

参考文献3

二级参考文献13

  • 1The American Society of Mechanical Engineers. ASME Boiler Pressure Vessel Code, 2004. Section III, Rules for Construction of Nuclear Power Plant Components, Div. 1, Subsection NH, Class 1 Components in Elevated Temperature Service[S]. ASME, New York: The American Society of Mechanical Engineers, 2004.
  • 2Campbell R D. Creep/fatigue interaction correlation for 304SS subjected to strain-controlled cycling with hold times at peak strain[J]. Journal of Engineering for Industry, 1971:887-892.
  • 3Vorpahl C, Moslang A, Rieth M. Creep-fatigue interaction and related structure property correlations of EUROFER97 steel at 550℃ by decoupling creep and fatigue load[J]. Joumal of Nuclear Materials, 2011, 417: 16-19.
  • 4NRC. Risk assessment of severe accident-induced steam generator tube rupture, NUREG-1570 [R]. US: NRC, 1998.
  • 5MAJUMDAR S. Prediction of structural integri- ty of steam generator tubes under severe accident conditions[J]. Nuclear Engineering and Design, 1999, 194(1): 31-55.
  • 6LIAO Y, GUENTAY S: Potential steam genera- tor tube rupture in the presence of severe accident thermal challenge and tube flaws due to foreign object wear[J]. Nuclear Engineering and Design, 2009, 239(6): 1 128-1 135.
  • 7BANG Y, JUNG G, LEE B, et al. Estimation of temperature-induced reactor coolant system and steam generator tube creep rupture probability under high-pressure severe accident conditions [J]. Journal of Nuclear Science and Technology, 2012, 49(8): 857-866.
  • 8PENG C H, YANG Y H. The analysis of severe accident induced steam generator tube rupture and LERF risk[J]. Advanced Materials Re- seareh, 2013, 614: 626-631.
  • 9BANSAH C Y, AKAHO E H K, AYENSU A, et al. Theoretical model for predicting the rela- tive timings of potential failures in steam genera- tor tubes of a PWR during a severe accident[J].Annals of Nuclear Energy, 2013, 59: 10-15.
  • 10LARSON F R, MILLER J. A time-temperature relationship for rupture and creep stresses[J]. Trans ASME, 2008, 74: 765-775.

共引文献7

同被引文献13

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部