期刊文献+

窄条翼布局导弹摇滚特性及流动机理

Rock motion and flow mechanism of missile configuration with strake wings
原文传递
导出
摘要 钝头体窄条翼布局导弹在大攻角下拥有极为优异的纵向气动特性,但横向容易失稳,做快速机动时容易诱发非指令的横向不稳定运动。通过开展高速风洞自由摇滚试验和数值模拟,研究了窄条翼导弹自由摇滚特性和流动机理,试验与计算吻合较好。研究发现:较大迎角时,窄条翼面积中心距离尾舵前缘根部5~6倍直径时,模型会进入极限环摇滚,窄条翼位置对模型稳定性有显著的影响,去掉窄条翼或尾舵时,模型均不会进入摇滚;模型空间流场特性表明,气流经过窄条翼时形成的片涡,对背风舵产生强烈的干扰,抑制了尾舵涡的形成和发展,使背风舵动态失稳,导致模型进入极限环摇滚。 Blunt forebody missile configuration with strake wings has excellent longitudinal aerodynamic characteristics,but has serious problems in lateral stability to induce uncommanded motion in unsteadily lateral direction when the missile maneuvers rapidly.Free-to-roll aerodynamics and flow mechanism of missile with strake wings are studied through high speed wind turnel free-to-roll tests and numerical simulation.Results of simulations agree well with wind tunnel test results.Study shows that model enters into limit cycle rock when the distance between the center of the area of strake wings and leading edge of tail fins is 5to 6diameters.Position of strake wings has significant effect on the stability of model.The model will not enter into limit-cycle rock when strakes or tail fins are removed.Spacial flow characteristics show that the wing vortices generated by strake wings can strongly interfere leeward fins to affect the formation and development of fin vortices.This leads to the loss of dynamic stability of leeward fins,and model thus enters limit-cycle rock.
出处 《航空学报》 EI CAS CSCD 北大核心 2017年第4期87-95,共9页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(11372336 91216203 11532016)~~
关键词 窄条翼 导弹 极限环摇滚 动态 流动干扰 strake wing missile limit-cycle rock dynamic flow interference
  • 相关文献

参考文献3

二级参考文献115

  • 1张涵信,刘伟,谢昱飞,叶友达.后掠三角翼的摇滚及其动态演化问题[J].空气动力学学报,2006,24(1):5-9. 被引量:13
  • 2杨云军,崔尔杰,周伟江.细长三角翼滚转/侧滑耦合运动的数值研究[J].航空学报,2007,28(1):14-19. 被引量:16
  • 3Salas M D. Digital {light:the last CFD aeronautical grandchallenge. Journal of Scientific Computing, 2006, 28 (213) : 479-505.
  • 4达兴亚,沈怀荣,赵忠良,等.基于CFD的飞行仿真方法研究.2011年中国系统仿真技术及其应用会议.2011.
  • 5Steger J L, Dougherty F C, Benek J A. A chimera grid scheme. ASME Mini-Symposium on Advances in Grid Generation. Houston, TX: ASME, 1982.
  • 6Murman S M, Rizk Y M, Schiff L B. Coupled numerical simulation of the external and engine inlet flows for the F-18 at large incidence. Aircraft Design, 2000(3): 65- 77.
  • 7Edge H L, Sahu J, Heavy K R. Computational fluid dy namics modeling of submunition separation from missile. AIAA-1999-3129, 1999.
  • 8Prewitt N C, Belk D M, Shyy W. Distribution of work and data for parallel grid assembly. AIAA 1999 913, 1999.
  • 9Prewitt N C, Belk D M, Shyy W. Parallel computing of overset grids for aerodynamic problems with moving grids. Progress in Aerospace Sciences, 2000(36) : 117-172.
  • 10Morgan P E, Visbal M R. Chimera-based parallelization of an implicit Navier-Stokes solver with applications. AIAA-2001-1088, 2001.

共引文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部