期刊文献+

基于改进鱼群算法的柔性作业车间调度问题研究 被引量:1

The Research of Flexible Job Shop Problem Based on Improved Artificial Fish Swarm Algorithm
原文传递
导出
摘要 为了解决柔性作业车间调度问题,提出了基于人工鱼群算法的求解方法。针对基本人工鱼群算法后期搜索盲目性大、精度不高的不足,提出了具有分布估计属性的随机行为,在算法中融入了粒子群算法,并采用柔性参数,提高了算法的寻优能力和精度。通过标准Kacem算例对该算法性能进行分析评估,表明了该算法对柔性作业车间调度问题的有效性。 In order to solve the flexible job shop problem(FJSP) , its solution based on the artificial fish swarm algorithm (AFSA)was proposed. In view of blindness and low precision of the basic AFSA in its late stage search, some strategies were presented by the solution, such as the prey behavior with the estimation of distribution, the combination of AFSA with the PS0 algorithm, and the adoption of flexible parameters,in order to enhance search ability and precision of the AFSA. The effectiveness of the algorithm was evaluated by stand- ard kacem sample, and the result demonstrates the effectiveness of the algorithm to solve the FJSP.
出处 《机电一体化》 2017年第3期23-27,59,共6页 Mechatronics
关键词 柔性作业车间调度 人工鱼群算法 粒子群算法 flexible job shop problem artificial fish swarm algorithm particle swarm algorithm
  • 相关文献

参考文献3

二级参考文献23

  • 1吴秀丽,孙树栋,余建军,张红芳.多目标柔性作业车间调度优化研究[J].计算机集成制造系统,2006,12(5):731-736. 被引量:59
  • 2余建军,孙树栋,郝京辉.免疫算法求解多目标柔性作业车间调度研究[J].计算机集成制造系统,2006,12(10):1643-1650. 被引量:27
  • 3袁坤,朱剑英.一种求解多目标柔性Job Shop调度的改进遗传算法[J].中国机械工程,2007,18(2):156-160. 被引量:24
  • 4韩培冬,吴宝中,李国喜,龚京忠.基于PSO的车间柔性调度计算[J].现代制造工程,2007(8):61-64. 被引量:6
  • 5LOW C Y, HSU C M, HUANG K I. Benefits of lot splitting in JobShop scheduling[ J]. International Journal of Advanced Manufacturing Technology,2004,24(9/10) :773-780.
  • 6LOW C Y. An approach of lot streaming in Job-Shop production system [ J ]. Journal of Chinese Institute Industrial Engineering, 1999,22(5) :671-680.
  • 7CHAN F T S,WONG T C,CHAN P L Y. Equal size lot 'streaming to Job-Shop scheduling problem using genetic algorithms [ C ]//Proc of IEEE International Symposium on Intelligent Control. Washington DC : IEEE Press,2004:472-476.
  • 8吴秀丽.多目标柔性作业车间调度技术研究[D].西安:西北工业大学,2007:55-56.
  • 9Ho N B,Tay J C,Lai E M K.An Effective Architec- ture for Learning and Evolving Flexible Job--shop Schedules [J]. European Journal of Operational Re- search, 2007,179(2) :316-333.
  • 10Xu Dongsheng, Ai Xiaoyan, Xing Lining. An Im- proved Ant Colony Optimization for Flexible Job Shop Scheduling Problems[C]//International Joint Conference on Computational Science and Optima- tion.Sanya, Hainan IEEE, 2009 517-519.

共引文献20

同被引文献9

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部