期刊文献+

基于MapReduce的轨迹压缩并行化方法 被引量:3

Parallel trajectory compression method based on MapReduce
下载PDF
导出
摘要 带有全球定位系统(GPS)功能设备的增多,产生大量的时空轨迹数据,给数据的存储、传输和处理带来了沉重的负担。为了减轻这种负担,各种轨迹压缩方法也随之产生。提出了一种基于MapReduce的并行化轨迹压缩方法,针对并行化导致的分段点前后轨迹的相关性被破坏的问题,首先,采用两种分段点相互交错的划分方法划分轨迹;然后,将分段轨迹分配到多个节点上进行并行化压缩;最后,对压缩结果进行匹配合并。性能测试分析结果表明,所提出的并行化轨迹压缩方法能够大幅提高压缩效率,而且能完全消除因分段导致分段点前后相关性被破坏带来的误差。 The massive spatiotemporal trajectory data is a heavy burden to store, transmit and process, which is caused by the increase Global Positioning System (GPS) -enable devices. In order to reduce the burden, many kinds of trajectory compression methods were generated. A parallel trajectory compression method based on MapReduce was proposed in this paper. In order to solve the destructive problem of correlation nearby segmentation points caused by the parallelization, in this method, the trajectory was divided by two segmentation methods in which the segmentation points were interleaving firstly. Then, the trajectory segments were assigned to different nodes for parallel compression. Lastly, the compression results were matched and merged. The performance test and analysis results show that the proposed method can not only increase the compression efficiency significantly, but also eliminate the error which is caused by the destructive problem of correlation.
作者 吴家皋 夏轩 刘林峰 WU Jiagao XIA Xuanl LIU Linfeng(School of Computer, Nanjing University of Posts and Telecommunications, Nanjing Jiangsu 210003, China Key Laboratory of Computer Network and Information Integration of Ministry of Education ( Southeast University), Nanfing Jiangsu 211189, China)
出处 《计算机应用》 CSCD 北大核心 2017年第5期1282-1286,1330,共6页 journal of Computer Applications
基金 国家自然科学基金资助项目(61373139 41571389 71301081) 东南大学计算机网络和信息集成教育部重点实验室开放基金资助项目(K93-9-2014-05B) 南京邮电大学科研基金资助项目(NY214063)~~
关键词 轨迹压缩 分布式存储 MAPREDUCE HADOOP 全球定位系统轨迹 trajectory compression distributed storage MapReduce Hadoop Global Positioning System (GPS) trajectory
  • 相关文献

参考文献2

二级参考文献19

  • 1张达夫,张昕明.基于时空特性的GPS轨迹数据压缩算法[J].交通信息与安全,2013,31(3):6-9. 被引量:15
  • 2Meratnia N,de By R A. Spatio-temporal compression techniques for moving point objects[J].Computer Science,2004.765-782.
  • 3Foley J D,van Dam A,Feiner S K. Computer graphics:principles and practice[M].Tokyo:Ltd.Ohmsha,2001.
  • 4Muckell J,Hwang J H,Lawson C T. Algorithms for compressing GPS trajectory data:an empirical evaluation[A].ACM,New York:ACM,2010.402-405.
  • 5Keogh E J,Chu S,Hart D. An online algorithm for segmenting time series[A].San Jose,CA:IEEE,2001.289-296.
  • 6Potamias M,Patroumpas K,Sellis T. Sampling trajectory streams with spatiotemporal criteria[A].Washington:IEEE,2006.275-284.
  • 7Fan Bo, Leng Supeng,Yang Kun. GPS:a method for data sha- ring in mobile social networks [ C ]//Proceedings of networ- king conference. Trondheim : IEEE ,2014 : 1-9.
  • 8Pan Gang, Qi Guande, Wu Zhaohui, et al. Land-use classifica- tion using taxi GPS traces [ J ]. IEEE Trans on Intelligent Transportation Systems,2013,14 ( 1 ) : 113-123.
  • 9Ray S, Blanco R, Goel A. Supporting location-based services in a main-memory database[ C ]//Proceedings of 2014 IEEE 15th international conference on mobile data management. Brisbane,QLD:IEEE,2014:3-12.
  • 10Zhao Peikun, Zhao Juanjuan, Wang Wu. Division of mobile so- cial network based on user behavior [ C ]//Proceedings of 2013 international conference on wavelet analysis and pattern recognition. Tianjin : IEEE,2013 : 148-152.

共引文献20

同被引文献17

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部