期刊文献+

基于改进引力搜索算法的交换机迁移策略

Switch migration strategy based on improved gravitation search algorithm
下载PDF
导出
摘要 针对多控制器软件定义网络(SDN)中交换机迁移策略迁移代价衡量单一,不能适应交换机流量的变化的情况,提出基于改进引力搜索算法的交换机迁移策略(IGS-SMS)。在决策阶段,应用基于模糊满意度的多目标决策方法,优化目标根据隶属度大小竞争优先权;在计算阶段,通过改进引力搜索算法优化优先权高的目标函数。实验结果表明,IGS-SMS在实现负载均衡的同时,能保证传输时延与交换机重分配的指标;在实验中,当局部负载较重时,动态迁移算法(DSMA)和基于改进型拍卖交换机迁移机制(PASMM)不能缓解控制器过载,而IGS-SMS执行后无控制器过载,且负载均衡度小于DSMA和PASMM。 In multi-controller Software Defined Network (SDN), since the existed switch migration strategies can not adapt to the change of switch traffic which only consider single migration factor, a Switch Migration Strategy based on Improved Gravitation Search Algorithm (IGS-SMS) was proposed. In the decision-making stage, the multi-objective decision based on fuzzy satisfaction was used to optimize the objectives by the competitive priority of membership. In the calculating phase, the objective function with the top priority was optimized by improved gravitational search algorithm. The simulation results show that the IGS-SMS achieves good load balancing of controllers while ensuring the index of transmission delay and switch redistribution. When local load was heavy in the experiment, Dynamic Switches Migration Algorithm (DSMA) and Progressive Auction based Switches Migration Mechanism (PASMM) couldn' t alleviate overload. By contrast, IGS-SMS could alleviate overload, and load balancing degree was lower than DSMA and PASMM.
作者 于明秋 周创明 王慧杰 杜瑞超 YU Mingqiu ZHOU Chuangming WANG Huijie DU Ruichao(College of Air and Missile Defense, Air Force Engineering University, Xi' an Shaanxi 710051, China)
出处 《计算机应用》 CSCD 北大核心 2017年第5期1317-1320,1325,共5页 journal of Computer Applications
关键词 软件定义网络 多控制器 交换机迁移策略 引力搜索算法 模糊满意度 Software Defined Network (SDN) multi-controller switch migration strategy Gravitation Search Algorithm (GSA) fuzzy satisfaction
  • 相关文献

参考文献3

二级参考文献37

  • 1Rashedi E, Nezamabadi-Pour H, Saryazdi S. GSA:a gravitational search algorithm[J] . Information Sciences, 2009, 179(13):2232-2248.
  • 2Yin Minghao, Hu Yanmei, Yang Fengqin, et al. A novel hybrid K-harmonic means and gravitational search algorithm approach for clustering[J] . Expert Systems with Applications, 2011, 38(8):9319-9324.
  • 3Bahrololoum A, Nezamabadi-Pour H, Bahrololoum H, et al. A prototype classifier based on gravitational search algorithm[J] . Applied Soft Computing, 2012, 12(2):819-825.
  • 4Han Xiaohong, Chang Xiaoming. A chaotic digital secure communication based on a modified gravitational search algorithm filter[J] . Information Sciences, 2012, 208:14-27.
  • 5Shaw B, Mukherjee V, Ghoshal S P. A novel opposition-based gravitational search algorithm for combined economic and emission dispatch problems of power systems[J] . International Journal of Electrical Power & Energy Systems, 2012, 35(1):21-33.
  • 6Khajehzadeh M, Taha M R, El-Shafie A, et al. A modified gravitational search algorithm for slope stability analysis[J] . Engineering Applications of Artificial Intelligence, 2012, 25(8):1589-1597.
  • 7Wolpert D H, Macready W G. No free lunch theorems for optimization[J] . IEEE Trans on Evolutionary Computation, 1997, 1(1):67-82.
  • 8Tizhoosh H R. Opposition-based learning:a new scheme for machine Intelligence[C] //Proc of International Conference on Computational Intelligence for Modeling Control and Automation. [S. l.] :IEEE Press, 2005:695-701.
  • 9Wang Hui, Wu Zhijian, Rahnamayan S, et al. Enhancing particle swarm optimization using generalized opposition-based learning[J] . Information Sciences, 2011, 181(20):4699-4714.
  • 10Yao Xin, Liu Yong, Lin Guangming. Evolutionary programming made faster[J] . IEEE Trans on Evolutionary Computation, 1999, 3(2):82-102.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部