期刊文献+

融合BFGS的自适应蜂群算法在谐波平衡分析中的应用

Adaptive bee colony algorithm combined with BFGS algorithm for microwave circuit harmonic balance analysis
下载PDF
导出
摘要 针对谐波平衡分析中传统算法存在初值限制,以及智能算法收敛速度慢的缺点,提出一种基于BFGS(Broyden-Fleteher-Goldfarl-Shanno)算法局部搜索策略的自适应蜂群算法。该算法在基本蜂群算法的基础上引入非线性的动态调整因子代替蜂群算法搜索公式中的随机变量,增加搜索的自适应性,并将BFGS算法运用到自适应蜂群算法后期求解,提高其局部搜索能力。实验结果表明,改进算法较标准蜂群算法迭代次数减少51.9%,相对于传统BFGS算法和部分改进智能算法均表现出较好收敛性能。 In view of the shortcomings of the initial value limitation of traditional algorithms and slow convergence speed of intelligent algorithms in harmonic balance analysis, an adaptive bee colony algorithm based on local search strategy of Broyden-Fleteher-Goldfarl-Shanno (BFGS) algorithm was proposed. Based on the basic bee colony algorithm, nonlinear dynamic adjustment factor was introduced to replace the random variables in the formula, thus improving the adaptability of searching. Meanwhile, BFGS algorithm was applied to the later period of bee colony algorithm to speed up the local search capability. Simulation results show that compared with the standard bee colony algorithm, the number of iterations of the improved algorithm was reduced by 51.9%, and the proposed algorithm has better convergence performance compared with the traditional BFGS algorithm and some other improved intelligent algorithms.
作者 南敬昌 张云雪 高明明 NAN Jingchang ZHANG Yunxue GAO Mingming(School of Electrics and Information Engineering, Liaoning Technical University, Huludao Liaoning 125105, China)
出处 《计算机应用》 CSCD 北大核心 2017年第5期1516-1520,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61372058) 辽宁省高校重点实验室项目(LJZS007) 辽宁省教育厅科学研究项目(L2015209)~~
关键词 自适应蜂群算法 动态调整因子 BFGS算法 谐波平衡 非线性分析 adaptive bee colony algorithm dynamic adjustment factor Broyden-Fleteher-Goldfarl-Shanno (BFGS) algorithm harmonic balance nonlinear analysis
  • 相关文献

参考文献8

二级参考文献102

  • 1张祖舜,沈灿.微波非线性电路全频域谐波平衡分析[J].电子学报,1995,23(3):62-67. 被引量:3
  • 2王冬冬,周永权.人工鱼群算法在求解非线性方程组中的应用[J].计算机应用研究,2007,24(6):242-244. 被引量:31
  • 3Li D H, Fukushima M. A modified BFGS method and its global convergence in nonconvex minimization[ J]. Journal of Computational and Applied Mathematics, 2001,129 ( 1- 2) :15-35.
  • 4Eusuff M M, Lansey K E. Optimization of water distribu- tion network design using the shuffled forg leaping algo- rithm[J]. Journal of Water Resources Planning and Man- agement, 2003,129 (3) :210-225.
  • 5唐焕文,秦学志.实用最优化方法[M].大连:大连理工大学出版社,2006.
  • 6Grosan C, Abraham A. A new approach for solving nonlin- ear equations systems [ J ]. IEEE Transactions on Systems, Man and Cybernetics-Part A, 2008,38 (3) :698-714.
  • 7Karaboga, Dervis. An idea based on honey bee swarm for numeri- cal optimization[R]. Teehn. Rep. TR06. Erciyes Univ. Press, Erciyes, 2005.
  • 8Manda K, Satapathy S C, Rao K R. Artificial BeeColony Based Image Clustering[C]//Proceedings of the International Confer- ence on Information Systems Design and Intelligent Applications 2012. Visakhapatnam, India, Springer Berlin Heidelberg,Januar- y 2012:29-37.
  • 9Ozturk C, Karaboga D. Hybrid artificial bee colony algorithm for neural network training[C]//2011 IEEE Congress on Evolu- tionary Computation (C[C). IEEE, 2011 : 84-88.
  • 10Zhu Guo-pu, Kwong S. Gbest guided artificial bee colony algo- rithm for numerical function optimization[J]. Applied Mathe- matics and Computation,2010,217(7) :3166-3173.

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部