期刊文献+

融合Vibe前景检测的Camshift算法

Improved Camshift Algorithm Fused with Vibe Foreground Detection
下载PDF
导出
摘要 Camshift算法是一种以跟踪颜色信息为目标的算法,该算法由于在光照变化、相似背景颜色干扰及目标遮挡的环境下鲁棒性不高,从而易造成视频跟踪的错误。为解决这些问题,将基于Vibe前景检测方法获取的前景信息融入到Camshift算法中,通过这种改进后的Camshift算法可以增强前景和背景的区分度。通过不同场景的视频跟踪结果表明,改进后的Camshift算法能更有效克服原算法的不足,具有较强的鲁棒性。 Camshift is a color-based tracking algorithm. Under illumination variation, similar background interference and target occlusion, the Camshift algorithm has low robustness and is easy to track astray. For solving this problem, an improved Camshifl algorithm fused with the Vibe algorithm can enhance distinction degree between target and background. Video target tracking results of different scenes show that the improved algorithm can effectively overcome the disadvantages of the traditional Camshift algorithm, such as illumination variation, similar background interference and target occlusion while the improved algorithm has higher robustness.
机构地区 龙岩学院 厦门大学
出处 《龙岩学院学报》 2017年第2期89-94,共6页 Journal of Longyan University
基金 福建省自然科学基金资助项目(2015J01587) 福建省教育厅中青年项目(JAT160487) 龙岩学院服务海西基金资助项目(JB10160 LYXY2011067)
关键词 CAMSHIFT算法 目标跟踪 光照变化 颜色干扰 目标遮挡 Camshift target tracking illumination variation color interference target occlusion
  • 相关文献

参考文献3

二级参考文献20

  • 1潘锋,王宣银,向桂山,梁冬泰.一种新的运动目标检测与跟踪算法[J].光电工程,2005,32(1):43-46. 被引量:18
  • 2胡刚,金振伟,司小平,郭海涛.车载导航技术现状及其发展趋势[J].系统工程,2006,24(1):41-47. 被引量:20
  • 3尹立苹,于德敏,王永强,许增朴.二值图像中多目标区域的标号和几何特征提取[J].计量与测试技术,2006,33(3):18-20. 被引量:9
  • 4汪沁,江淑红,张建秋,胡波.提高Mean-shift跟踪算法性能的方法[J].复旦学报(自然科学版),2007,46(1):85-90. 被引量:11
  • 5S Saravanakumar,A Vadivel Saneem, C G Ahmed. Multiple human object tracking using background subtraction and shadow removal techniques [ C ]. The International Confer- ence on Signal and Image Processing(ICSIP) ,2010.
  • 6Rucklidge W J. Efficiently locating objects using hausdorff distance [ J ]. International Journal of Computer Vision, 1997,24(3) :251 - 270.
  • 7HUANG Fuzhen, SU Jianbo. Abstracting and tracking of outline of face based on level set method [ J ]. Computer transaction,2003,26 (4) :491 - 496.
  • 8Exner D. Fast and robust camshift tracking [ C ]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC : IEEE Computer Society,2010:9 - 16.
  • 9Ojala T, Valkealahti K, OJA E, et al. Texture discrimina- tion with multi-dimensional distributions of signed gray level differences[ J ]. Pattern Recognition, 2011,34 ( 3 ) : 727 - 739.
  • 10Performance evaluation of tracking and surveillance 2001 (PETS2001) [ EB/OL]. http://ftp, pets. rdg. ac. uk/ pub/PETS2001/.

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部