期刊文献+

代谢工程改造Escherichia coli生产L-苹果酸 被引量:1

Design and construction of an L-malate-overproducing Escherichia coli strain
原文传递
导出
摘要 为了高效生产L-苹果酸,首先在大肠杆菌w3110中敲除ldh A、pox B、pfl B和pta-ack A基因积累丙酮酸,为L-苹果酸合成提供前体,并且通过苹果酸酶的引入构建L-苹果酸一步合成路径,将丙酮酸转化为L-苹果酸.在此基础上,敲除frd BC、fum B和fum AC阻断L-苹果酸代谢路径,并结合pos5基因的表达对胞内辅因子路径进行优化.结果表明:(1)ldh A、pox B、pfl B和pta-ack A基因的敲除能有效地提高丙酮酸产量到20.9 g/L;(2)苹果酸酶突变及过量表达使得L-苹果酸和琥珀酸产量分别提高了87.2%和31.6%,达到1.46 g/L和3.25 g/L;(3)通过敲除frd BC、fum B和fum AC,L-苹果酸产量增加到3.42 g/L;(4)pos5基因的表达降低了胞内NADH/NAD+比率,增加了NADPH含量,最终突变菌株Escherichia coli F0921的L-苹果酸产量达到9.34 g/L.因此,通过苹果酸酶构建L-苹果酸生物合成路径提高L-苹果酸的生产是可行的,结果可为代谢工程改造大肠杆菌生产L-苹果酸提供了新的研究思路. The aim of our study was to engineer Escherichia coli to produce L-malate. The pool of pyruvate was first increased by knocking out the genes ldhA, poxB, pflB, and pta-ackA in E. coli w3110, and the one-step L-malate synthesis pathway was constructed via malic enzyme. Furthermore, the L-malate consumption pathway was disrupted by knocking out frdBC, fumB, and fumAC, and the cofactor level was optimized by overexpressing pos5. The pyruvate production was increased to 20.9 g/L with knockout of ldhA, poxB, pflB, and pta-ackA, and the titers of L-malate and succinate were respectively increased to 87.2% and 31.6% with overexpression of C490S. The titer of l-malate was further improved to 9.34 g/L in E. coli F0921 with knockout of frdBC, fumB, and fumAC, and optimization of the cofactor level. In summary, the one-step L-malate synthesis pathway was successfully constructed in E. coli to produce L-malate by malic enzyme, providing a new method to produce L-malate.
出处 《应用与环境生物学报》 CAS CSCD 北大核心 2017年第2期269-275,共7页 Chinese Journal of Applied and Environmental Biology
基金 国家自然科学基金项目(214226 02) 中组部青年拔尖人才支持计划资助~~
关键词 大肠杆菌 L-苹果酸 苹果酸酶 NADH激酶 代谢工程 基因敲除 Escherichia coli L-malate malic enzyme NADH kinase metabolic engineering gene knockout
  • 相关文献

参考文献2

二级参考文献58

  • 1淡明,黄海波,郭安平,贺立卡.一种简单高效的真菌总RNA提取方法[J].福建热作科技,2006,31(4):19-20. 被引量:10
  • 2胡永红,欧阳平凯苹果酸工艺学[M].北京:化学工业出版社,2009:9-11.
  • 3Zhou S, Yomano L P, Shanmugam K T, et al.Fermentation of 10% (w/v) sugar to D(-)-lactate by engineered Escherichia coli B [ J] .Biotechnol Lett ,2005,27(23/24) : 1891-1896.
  • 4Jantama K, Zhang Xueli, Moore J C, et al. Eliminating side products and increasing succinate yields in engineered strains of Escherichia coil C[J]. Biotechnol Bioeng, 2008, 101(5): 881-893.
  • 5Bloor A E, Cranenburgh R M.An efficient method of selectable marker gene excision by Xer recombination for gene replacement in bacterial chromosomes [ J ]. Appl Environ Microbiol, 2006,72 (4) :2520-2525.
  • 6Woods S A, Sehwartzbach S D, Guest J R. Two biochemically distinct classes of fumarase in Escherichia coil [ J ]. Biochim Biophys Acta, 1988,954 : 14-26.
  • 7Peleg Y, Barak A, Scrutton M C, et al.Malic acid accumulation by Aspergillus flavus [ J ]. Appl Microbiol Biotechnol, 1989,30 ( 2 ) : 176-183.
  • 8Zhang X, Wang X, Shanmugam K T,et al.L-malate production by naetabolically engineered Escherichia coli [ J ]. Appl Environ Microbiol, 2011,77 (2) :427-434.
  • 9Bressler E,Pines O,Goldberg I,et al. Conversion of fumaric acid to L-malic by sol-gel immobilized Saccharomyces cerevisiae in a supported liquid membrane bioreactor[J]. Biotechnol Prog, 2002, 18 : 445-450.
  • 10Rosenberg M, Mikova H, KriStofikova L. Formation of L-malie acid by yeasts of the genus Dipodascus[J]. Lett Appl Microbiol, 1999,29 : 221-223.

共引文献6

同被引文献11

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部