期刊文献+

基于多线索的运动手部分割方法 被引量:1

Moving Hand Segmentation Based on Multi-cues
下载PDF
导出
摘要 分割运动手部时,为了不依赖不合理的假设和解决手脸遮挡问题,该文提出一种基于肤色、灰度、深度和运动线索的分割方法。首先,利用灰度与深度光流的方差信息来自适应提取运动感兴趣区域(Motion Region of Interest,MRoI),以定位人体运动部位。然后,在MRoI中检测满足肤色与自适应运动约束的角点作为皮肤种子点。接着,根据肤色、深度与运动准则将皮肤种子点生长为候选手部区域。最后,通过边缘深度梯度、骨架提取和最优路径搜索从候选手部区域中分割出运动手部区域。实验结果表明,在不同情形下,特别是手脸遮挡时,该方法可以有效和准确地分割出运动手部区域。 For moving hand segmentation, in order not to use unreasonable assumptions and to solve the hand-face occlusion, a segmentation method based on skin color, grayscale, depth and motion cues is proposed. Firstly, according to the variance information of grayscale and depth optical flow, Motion Region of Interest (MRoI) is adaptively extracted to locate the moving body part. Then, corners which satisfy skin color and adaptive motion constraints are detected as skin seed points in the MRoI. Next, skin seed points are grown to obtain candidate hand region utilizing skin color, depth and motion criterions. Finally, edge depth gradient, skeleton extraction and optimal path search are employed to segraent moving hand region from candidate hand region. Experiment results show that the proposed method can effectively and accurately segment moving hand region under different circumstances, especially when the face is occluded by the hand.
出处 《电子与信息学报》 EI CSCD 北大核心 2017年第5期1088-1095,共8页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61375086) 北京市教育委员会科技计划重点项目(KZ201610005010)~~
关键词 运动手部分割 多线索 不依赖假设 手脸遮挡 Moving hand segmentation Multi-cues Assumption free Hand-face occlusion
  • 相关文献

参考文献2

二级参考文献35

  • 1Mansouri A, Aznaveh A, Torkamani-Azar F, et al.. hnage quality assessment using the singular value decomposition theorem[J]. Optical Review, 2009, 16(2): 49-53.
  • 2Ferzli R and Karam L J. A no reference objective sharpness metric using riemannian tensor[C]. 3rd International Workshop on Video Processing and Quality Metrics for Consumer Electronics (VPQM), Scottsdale, AZ, USA, 2007: 25-26.
  • 3Hautitere N, Tare1 J P, Aubert D, et al.. Blind contrast enhancement assessment by gradient ratioing at visible edges[J]. Image Analysis and Stereology Journal, 2008, 27(2): 87-95.
  • 4Cohen E and Yitzhaky Y. No-reference assessment of blur and noise impacts on image quality[J]. Signal, Image and Video Processing, 2010, 4(3): 289-302.
  • 5Zhai G, Zhang W, Yang X, et al.. Modeling blocking visual sensitivity profile[C]. IEEE International Conference on Multimedia and Expo, Toronto, Ontario, Canada, 2006: 485-488.
  • 6Liu H and Heynderickx I. A perceptually relevant no-reference blockiness metric based on local image characteristics[J]. Eurasip Journal on Advances in Signal Processing, 2009, 12(5): 1-14.
  • 7Brox T, Weickert J, Burgeth B, et al.. Nonlinear structure tensors[J]. Image Vision Computing, 2006, 24(1): 41-55.
  • 8Hung S C, Sen C H, and Ming H T. An efficient image retrieval based on HSV color space[C]. International Conference on Electrical and Control Engineering, Yichang, China, 2011: 5746-5749.
  • 9Caicedo J C, Kapoor A, and Kang S. Collaborative personalization of image enhancement[C]. Proceedings of 29th IEEE Conference on Computer Vision and Pattern Recognition, Colorado Spring, CO, USA, 2011: 249-256.
  • 10Wandell B A. Foundations of Vision[M]. Stamford: Sinauer Associates Inc. 1995:277 284.

共引文献31

同被引文献3

引证文献1

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部