期刊文献+

基于随机森林的频谱域光学相干层析技术的图像视网膜神经纤维层分割 被引量:2

Retinal Nerve Fiber Layer Segmentation of Spectral Domain Optical Coherence Tomography Images Based on Random Forest
下载PDF
导出
摘要 频谱域光学相干层析技术是一种广泛应用于眼科疾病诊断的成像技术,而视网膜层分割对青光眼的诊断有很好的参考价值。该文利用随机森林分类器寻找视网膜层间单像素宽的边界,随机森林分类器由12个特征训练产生,其中相对灰度特征和邻域特征较好地解决灰度不均匀的分割误差大问题。对10组带有青光眼病变的视网膜图像进行分割,并与传统算法和Iowa软件进行比较,平均边界绝对误差为9.20±2.57μm,11.33±2.99μm和10.27±3.01μm。实验结果表明,改进算法可以较好地分割视网膜神经纤维层。 Spectral Domain Optical Coherence Tomography (SD-OCT) imaging technique is widely used in the diagnosis of ophthalmology diseases. The segmentation of retinal layers plays a very important role in the diagnosis of glaucoma. In this paper, a random forest classifier is used which is trained by twelve different features to find the boundaries between layers. What's more, the relative gray feature and the neighbor features are used to solve the problem of large errors under the condition of uneven illumination. In the last, the segmentation results of the proposed algorithm, a traditional algorithm and Iowa segmentation software on ten sets of retinal images are compared with manual segmentation, and the average absolute boundary errors are 9.20±2.57 μm, 11.33±2.99μm 10.27±3.01 μm, respectively. The experiments show that the proposed algorithm can segment the Retinal Never Fiber Layer (RNFL) better.
出处 《电子与信息学报》 EI CSCD 北大核心 2017年第5期1101-1108,共8页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61671242) 中央高校基本科研业务费专项资金(30920140111004) 六大人才高峰(2014-SWYY-024) 福建省信息处理与智能控制重点实验室(闽江学院)开放课题基(MJUKF201706)~~
关键词 频域光学相干层技术 青光眼 视网膜图像分割 视网膜神经纤维层 随机森林 Spectral Domain Optical Coherence Tomography (SD-OCT) Glaucoma Retinal image segmentation Retinal Never Fiber Layer (RNFL) Random forest
  • 相关文献

参考文献1

二级参考文献22

  • 1Wojtkowski M,Bajraszewski T,Targowski P,et al.Real time in vivo imaging by high-speed spectral optical coherence tomography [J].Optics Letters,2003,28(19):1745-1747.
  • 2Ishikawa H,Stein D M,Wollstein G,et al.Macular Segmentation with Optical Coherence Tomography [J].Invest.Ophthalmic Visual Science,2005,46(6):2012-2017.
  • 3Chen Q,Leng T,Zheng L,et al.Automated drusen segmentation and quantification in SD-OCT images [J].Medical Image Analysis,2013,17(8):1058-1072.
  • 4Yazdanpanah A,Hamarneh G,Smith B R,et al.Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach [J].IEEE Trans.Medical Imaging,2011,30(2):484-496.
  • 5Vermeer K A,van der Schoot J,Lemij H G,et al.Automatedsegmentation by pixel classification of retinal layers in ophthalmic OCT images [J].Biomedical Opticas Express,2011,2(6):1743-1756.
  • 6Lang A,Carass A,Hauser M,et al.Retinal layer segmentation of macular OCT images using boundary classification [J].Biomedical Optics Express,2013,4(7):1133-1152.
  • 7Cha Y-M,Han J-H.High-Accuracy retinal layer segmentationfor optical coherence tomography using tracking kernels based on Gaussian mixture model [J].IEEE Journal of Selected Topics in Quantum electronics,2013,20(2).
  • 8Kafieh R,Rabbani H,Abramoff M D,et al.Intra-retinal layersegmentation of 3D optical coherence tomography using coarse grained diffusion map [J].Medical Image Analysis,2013,17(8):907-928.
  • 9Wu X D,Chen D Z.Optimal Net Surface Problems with Applications [C]∥Proceedings of the 29th Int’l Colloquium Automata,Languages and Programming (ICALP).Berlin Heidelberg,German:Springer-Verlag,2002:1029-1042.
  • 10Chiu S J,Li X T,Nicholas P,et al.Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation [J].Optics Express,2010,18(18):19413-19428.

共引文献7

同被引文献11

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部