期刊文献+

由最大同类球提取模糊分类规则 被引量:3

Extracting Fuzzy Rules from the Maximum Ball Containing the Homogeneous Data
下载PDF
导出
摘要 为提高模糊分类规则的有效性和可解释性,该文提出一种基于最大同类球的模糊规则提取方法。首先,每个样本根据与最近异类之间的距离确定一个最大同类球。然后根据各个同类球中样本之间的包含关系和独有性对同类球进行约简。再根据约简后的同类球建立MA分类器的模糊规则前件。MA(Mamdani-Assilan)二分类器的模糊规则后件参数学习以加权分类错误平方最小化为目标函数,采用共轭梯度法求解后件参数。KEEL标准数据集中的12个10折交叉验数据集的对比分类实验验证了该方法的有效性。 In order to improve the interpretability and effectiveness of the fuzzy classifier rules, this paper presents a new method to extract the fuzzy rules based on the maximum ball only containing the homogeneous data. At first, every sample constructs a maximum ball in the light of the shortest distance to heterogeneous samples. Then those balls are reduced according to the relation of inclusion and the unique among the samples that the ball encloses. Then the fuzzy rules are constructed with the reserved balls. The parameters learning of the antecedent part of the classifier are based on the minimization of the weight misclassification quadratic error and resolved with the conjugate gradient algorithm. The experiments on 12 benchmark datasets with 10 folds are performed to demonstrate the validity of the classifier.
出处 《电子与信息学报》 EI CSCD 北大核心 2017年第5期1130-1135,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61170122 61202311 61272210) 江苏省自然科学基金(BK2012552) 江苏省青蓝工程资助项目(2014)~~
关键词 模糊规则 分类 约简 Mamdani-Assilan(MA) 同类 Fuzzy rule Classifier Reduction Mamdani-Assilan (MA) Homogeneous data
  • 相关文献

参考文献3

二级参考文献43

  • 1Ruan D, Huang CF. Fuzzy Sets and Operations Research for Decision Suppor. Beijing: Normal University Press 2000.
  • 2Ishibuchi H, Nakashima T, Murata T. Performance evaluation of fuzzy classifier systems for multi-dimensional pattern classification problems. IEEE Trans. on Systems, Man, and Cybernetics, Part B, 1999,29(5):601-618.
  • 3Cordon O, Herrera F, Villar P. Generating the knowledge base of a fuzzy rule-based system. IEEE Trans. on Fuzzy Systems, 2001,9(4):667-674.
  • 4Roubos JA, Setnes M. Compact and transparent fuzzy models and classifiers through iterative complexity reduction. IEEE Trans.on Fuzzy Systems, 2001,9(4):516-524.
  • 5Mamdani EH, Assilian S. An experiment in linguistic synthesis with a fuzzy logic controller. Int'l Journal of Man-Machine Studies,1975,7(1):1-13.
  • 6Corcoran AL, Sen S. Using real-valued genetic algorithms to evolve rule sets for classification. In: Proc. of the 1st IEEE Int'l Conf.on Evolutionary Computation. Orlando: 1994. 120-124. http://www.informatik.uni-trier.de/~ley/db/conf/icec/icec1994-1.html
  • 7Cordon O, Herrera F, Verdegay JL. A learning process for fuzzy control rules using genetic algorithms. Fuzzy Sets and Systems,1998,100(1~3):143-158.
  • 8De Oliverira JV. Semantic constraints for membership function optimization. IEEE Trans. on Systems, Man, and Cybernetics, Part A, 1999,29(1):128-138.
  • 9Hoffmann F. Boosting a genetic fuzzy classifier. In: Proc. of the Joint 9th IFSA World Congress and 20th NAFIPS Int'l Conf. 2001.1564-1569. http://morden.csee.usf. edu/Nafipsf/ifsanafips2001/allPapers.html
  • 10Holte RC. Very simple classification rules perform well on most commonly used dataset. Machine Learning, 1993,11(1):63-91.

共引文献11

同被引文献19

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部