期刊文献+

基于DBSCAN子空间匹配的蜂窝网室内指纹定位算法 被引量:7

DBSCAN Based Subspace Matching for Indoor Cellular Network Fingerprint Positioning Algorithm
下载PDF
导出
摘要 针对无线信道动态衰落特性引起的蜂窝网室内定位误差较大的问题,该文提出基于密度的空间聚类(Density Based Spatial Clustering of Applications with Noise,DBSCAN)子空间匹配算法,有效剔除大误差点,提高定位精度。首先通过划分信号空间,构建多个子空间,在子空间中利用加权K近邻匹配算法(Weighted K Nearest Neighbor,WKNN)估计出目标位置;然后利用DBSCAN对估计位置进行聚类以剔除异常点;最后结合概率模型确定最终估计位置。实验结果表明,基于DBSCAN的子空间匹配算法能有效剔除大误差点,提高蜂窝网室内定位系统的整体性能。 For the sake of reducing the indoor localization errors caused by dynamic signal fading in cellular network, this paper propose a novel Density-Based Spatial Clustering of Applications with Noise (DBSCAN) based subspace matching algorithm for indoor localization, which can improve the localization accuracy by eliminating the location with large errors. Specifically, the signal space is firstly divided into several subspaces, where a position estimation can be obtained respectively using the Weighted K Nearest Neighbors (WKNN) approach. Then, DBSCAN is applied to the position coordinates obtained from each subspace which eliminates the outliers. Finally, the location is estimated based on probability analysis. Experimental results show that the proposed approach can improve the location accuracy by eliminating the location with large errors.
出处 《电子与信息学报》 EI CSCD 北大核心 2017年第5期1157-1163,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61301126) 长江学者和创新团队发展计划(IRT1299) 重庆市基础与前沿研究计划(cstc2013jcyjA 40041 cstc2015jcyj BX0065) 重庆邮电大学青年科学研究项目(A2013-31)~~
关键词 室内定位 蜂窝网 DBSCAN 子空间匹配 Indoor localization Cellular networks Density Based Spatial Clustering Applications with Noise (DBSCAN) Subspace matching
  • 相关文献

参考文献3

二级参考文献22

  • 1孙佩刚,赵海,韩光洁,张希元,朱剑.混沌三角形定位参考点选择算法[J].计算机研究与发展,2007,44(12):1987-1995. 被引量:12
  • 2Liu Hui, Darabi H, Banerjee P, et al. Survey of wireless indoor positioning techniques and systems[J], IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2007, 37(6): 1067-1080.
  • 3Bialer 0, Raphaeli D, and Weiss A .J. Maximum-likelihood direct position estimation in dense multipath[J]. IEEE Transactions on Vehicular Technology, 2013, 62(5): 2069-2079.
  • 4Wang Gang, Li You-ming, and Ansari N. A semidefinite relaxation method for source localization using TDOA and FDOA measurements[J]. IEEE Transactions on Vehicular Technology, 2013, 62(2): 853-862.
  • 5Sen S, LeeJ, Kim K H, et al. Avoiding multipath to revive inbuilding WiFi localization[C]. Proceedings of llth Annual International Conference on Mobile Systems, Applications, and Services, Taipei, 2013: 249-262.
  • 6Liu Hong-bo, YangJie, Sidhom S, et al. Accurate WiFi based localization for smartphones using peer assistance[J]. IEEE Transactions on Mobile Computing, 2014, 13(10): 2199-2214.
  • 7Ji M, KimJ, Cho Y, et al. A novel WiFi AP localization method using monte carlo path-loss model fitting simulation[C]. Proceedings of IEEE 24th International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), London, 2013: 3487-3491.
  • 8KooJ and Cha H. Localizing WiFi access points using signal strength[J]. IEEE Communications Letters, 2011, 15(2): 187-189.
  • 9Roberts B and Pahlavan K. Site-specific RSS signature modeling for WiFi localization[C]. Proceedings of Global Telecommunications Conference, Honolulu, HI, 2009: 1-6.
  • 10Le T M, Liu Ren-ping, and Hedley M. Rogue access point detection and localization[C]. Proceedings of IEEE 23rd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), Sydney, NSW, 2012: 2489-2493.

共引文献98

同被引文献69

引证文献7

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部