期刊文献+

基于改进随机森林算法的Android恶意软件检测 被引量:40

Android malware detection based on improved random forest
下载PDF
导出
摘要 针对随机森林(RF,random forest)算法的投票原则无法区分强分类器与弱分类器差异的缺陷,提出一种加权投票改进方法,在此基础上,提出一种检测Android恶意软件的改进随机森林分类模型(IRFCM,improved random forest classification model)。IRFCM选取Android Manifest.xml文件中的Permission信息和Intent信息作为特征属性并进行优化选择,然后应用该模型对最终生成的特征向量进行检测分类。Weka环境下的实验结果表明IRFCM具有较好的分类精度和分类效率。 Aiming at the defect of vote principle in random forest algorithm which is incapable of distinguishing the dif- ferences between strong classifier and weak classifier, a weighted voting improved method was proposed, and an improved random forest classification (IRFCM) was proposed to detect Android malware on the basis of this method. The IRFCM chose Permission information and Intent information as attribute features from AndroidManifest.xml files and optimized them, then applied the model to classify the final feature vectors. The experimental results in Weka environment show that IRFCM has better classification accuracy and classification efficiency.
作者 杨宏宇 徐晋 YANG Hong-yu XU Jin(School of Computer Science and Technology, Civil Aviation University of China, Tianjin 300300, Chin)
出处 《通信学报》 EI CSCD 北大核心 2017年第4期8-16,共9页 Journal on Communications
基金 国家科技重大专项基金资助项目(No.2012ZX03002002) 中国民航科技基金资助项目(No.MHRD201009 No.MHRD201205)~~
关键词 随机森林 加权投票 恶意软件 分类检测 random forest, weighted vote, malware, classification detection
  • 相关文献

参考文献6

二级参考文献81

  • 1网秦.2013年上半年网秦全球手机安全报告[R/OL].[2013-07-23].http://cn.nq.com/neirong/2013Q2.pdf.
  • 2JIANG X,ZHOU Y.A survey of Android malware[M].New York:Springer,2013:3-20.
  • 3SCHMIDT A D,BYE R,SCHMIDT H G,et al.Static analysis of executables for collaborative malware detection on Android[C]//Proceedings of the 2009 IEEE International Conference on Communications.Piscataway:IEEE Press,2009:631-635.
  • 4BURGUERA I,ZURUTUZA U,NADJM-TEHRANI S.Crowdroid:behavior-based malware detection system for Android[C]//Proceedings of the 1st ACM Workshop on Security and Privacy in Smartphones and Mobile Devices.New York:ACM,2011:15-26.
  • 5CHIANG H S,TSAUR W.Mobile malware behavioral analysis and preventive strategy using ontology[C]//Proceedings of the 2010IEEE Second International Conference on Social Computing.Piscataway:IEEE Press,2010:1080-1085.
  • 6SHABTAI A,ELOVICI Y.Applying behavioral detection on Android-based devices[C]//Proceedings of the Mobile Wireless Middleware,Operating Systems,and Applications.Berlin:Springer,2010,48:235-249.
  • 7Google.Manifest.permission[EB/OL].[2013-11-01].http://developer.android.corn/reference/android/Manifest.permission.html.
  • 8BARRERA D,KAYACIK H G,van OORSCHOT P C,et al.A methodology for empirical analysis of permission-based security models and its application to Android[C]//CCS '10:Proceedings of the 17th ACM Conference on Computer and Communications Security.New York:ACM,2010:73-84.
  • 9ZHOU Y,JIANG X.Dissecting Android malware:characterization and evolution[C]//Proceedings of the 2012 IEEE Symposium on Security and Privacy.Washington,DC:IEEE Computer Society,2012:95-109.
  • 10KIRA K,RENDELL L A.The feature selection problem:traditional methods and a new algorithm[C]//AAAI '92:Proceedings of the 10th National Conference on Artificial Intelligence.Palo Alto:AAAI Press,1992:129-134.

共引文献184

同被引文献256

引证文献40

二级引证文献212

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部