期刊文献+

多项式数据通路的高层次综合方法 被引量:1

The Method of High Level Synthesis for Polynomial Datapaths
原文传递
导出
摘要 为了实现多项式数据通路的高层次综合,采用有序、简化和正则的带权值广义表模型表达该多项式.首先对该带权值广义表进行线性化处理;然后提出了基于带权值广义表的多项式数据通路的高层次优化方法.该方法以自底向上的方式遍历带权值广义表中的节点,并迭代地析取该带权值广义表中的乘法和加法项,进而将该带权值广义表转换为不可简化的有层次的带权值广义表集合,最终将该集合转换为更适于高层次综合的可调度数据流图.实验结果表明,与传统的方法相比,采用该方法得到的数据流图转化为寄存器传输级结构具有更小的延迟和面积. In order to implement high level synthesis for polynomial datapaths, the ordered, reduced and canonical weighted generalized list was used to represent for the polynomials. The weighted generalized list was linearized firstly. And based on the weighted generalized list, a high level optimization method for polynomial datapaths was given, which traverses the nodes of the weighted generalized list in a bottom-up fashion and extracted the product terms and sum terms from the weighted generalized list iteratively, and then transformes weighted generalized list into a set of irreducible hierarchical weighted generalized lists, and finally transformes the set of irreducible hierarchical weighted generalized lists into corresponding schedulable data flow graphs which are better suited for high level synthesis. Experiments show that the register transfer level structure which obtained from the sehedulable data flow graphs generated by the pro- posed method had smaller latency and less datapth area than those obtained using traditional methods.
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2017年第1期130-136,共7页 Journal of Beijing University of Posts and Telecommunications
基金 国家自然科学基金项目(61473047) 中央高校基本科研业务费专项资金项目(310824161004)
关键词 多项式 带权值广义表 数据通路 高级综合 polynomial weighted generalized list datapaths high level synthesis
  • 相关文献

参考文献1

二级参考文献12

  • 1王海霞,韩承德.整数乘法电路的形式化验证方法研究[J].计算机研究与发展,2005,42(3):404-410. 被引量:6
  • 2郑飞君,严晓浪,葛海通,杨军.使用布尔可满足性的组合电路等价性验证算法[J].电子与信息学报,2005,27(4):651-654. 被引量:3
  • 3杜振军,马光胜,冯刚.A new model for verification[J].Journal of Harbin Institute of Technology(New Series),2007,14(3):305-310. 被引量:2
  • 4GOPALAKRISHNAN S, KALLA P. Optimization of polynomial datapaths using finite ring algebra[J]. ACM Transaction on Design Automation of Electronic System, 2007, 12(4): 49(1-30).
  • 5SMITH J, MICHELI D G. Polynomial circuit models for component matching in high-level synthesis [J]. IEEE Transaction on Very Large Scale Integration Systems, 2001, 9(6):783-799.
  • 6PEYMANDOUST A, MICHELI D G. Application of symbolic computer algebra in high-level data-flow syn thesis [J].IEEE Transaction on Computer-Aided Design of Integrated Circuits and Systems, 2003, 22 (9) : 1154-1165.
  • 7PEYMANDOUST A, SIMUNIC T, MICHELI D G. Complex instruction and software library mapping for embedded software using symbolic algebra [J]. IEEE Transaction on Computer-Aided Design of Integrated Circuits and Systems, 2003, 22(8):964-975.
  • 8HOSANGADI A, FALLAH F, KASTNER R. Optimizing polynomial expressions by algebraic factorization and common subexpression elimination [J]. IEEE Transaction on Computer-Aided Design of Integrated Circuits and Systems, 2006, 25(10): 2012-2022.
  • 9BRYANT R E. Graph based algorithms for Boolean function manipulation [J]. IEEE Transaction on Computers, 1986, C-35 (8): 677-691.
  • 10KEIM M, DRECHSLER R, BECKER B, et al. Polynomial formal verification of multipliers [J]. Formal Methods in System Design, 2003, 22 (1): 39-58.

共引文献1

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部