摘要
文章针对物流信息采集、跨组织管理、决策支持三方面的突出问题,提出应采纳融合物联网、数据挖掘等新兴技术的综合解决方案。综合应用物联网与数据挖掘及其互补性,构建了融合物联网与数据挖掘的物流信息处理与分析模型,主要包括:基于物联网的物流信息感知与采集、基于粗糙集与证据理论的物流信息整合处理、基于粗糙集与神经网络的物流信息分析。进而,以冷链物流信息管理为背景,设计了融合物联网和粗糙集的物流信息处理和分析流程,从而为动态、离散的物流信息处理与分析提供了有效解决方案。
In order to solve the problems of logistics information collection, inter-organizational management and decision-support, the study proposes an integrated solution of Internet of things (IOT) and data mining. Then, the study constructs a logistics information processing and analysis model by analyzing IOT, data mining and complementarities between them. The model is composed of three parts: logistics information sensing and gathering by IOT, logistics information integrating and processing by rough set and DS theory, logistics information analysis by rough set and artificial neural networks. Finally, a logistics information processing and analysis process is designed for cold chain based on IOT and rough set to provide a solution to process and analyze dynamic and discrete logistics information.
出处
《图书馆学研究》
CSSCI
2017年第6期61-65,21,共6页
Research on Library Science
基金
国家自然科学基金项目"基于动态数据挖掘的物流信息智能分析研究"(项目编号:71373197)的研究成果之一
关键词
物流信息
信息处理
信息分析
物联网
数据挖掘
logistics information information processing information analysis Internet of Things (IOT) data mining