摘要
采用固相烧结法制备了不同组分Pb(Zr_xTi_(1-x))O_3(x=0.8、0.7、0.48、0.3、0.2)陶瓷。分别采用TG/DSC分析仪、X射线衍射仪、扫描电子显微镜和阻抗分析仪LCR分析了粉体的热分解温度;表征了PZT压电陶瓷的微观结构与形貌;并讨论了不同Zr/Ti比对PZT陶瓷的介电性能的影响。结果表明:Pb(Zr_xTi_(1-x))O_3(x=0.8、0.7、0.48、0.3、0.2)陶瓷靶材在850℃预烧2 h后,得到了PZT主晶相成相明显的粉末。在1 050℃烧结8 h得到了晶界清晰、晶粒尺寸分布较均匀、较致密、具有纯的钙钛矿结构的PZT陶瓷。不同Zr/Ti比对PZT陶瓷的微观结构和性能有重要影响,测试了不同组分PZT陶瓷在1 kHz处的介电常数值,得出当x=0.48时,PZT陶瓷介电常数表现最佳,介电损耗最小,ε=534,tan δ=0.04。
Pb (Zr1-xTix)O3 ( x = 0. 8 , 0. 7, 0.48 , 0.3 , 0.2 ) ceramics were prepared by solid state sintering. The thermal decomposition of powder, the surface topography, the microstructure and the effect of different Zr /Ti on the properties of PZT piezoelectric ceramics were characterized by TG/DSC, XRD, SEM and LCR respectively. PZT piezoelectric ceramic microstructure and morphology were also characterized; the influence of different Zr/Ti on dielectric properties of PZT ceramics were discussed in the paper. The result shows that Pb (Zr1-xTix) 03 (x = 0.8, 0.7, 0.48, 0.3 , 0. 2) ceramic target at 850°C is resinteringed for 2 hours, and PZT has been the main crystal phase formation. After being sinteringed at 1050 °C for 8 hours , the grain boundaries are clear, the grain size distribution is more uni-form and d en ser, and the PZT ceramics with pure perovskite structure are obtained. It is found that the different Zr/Ti is important for preparing the microstructure and dielectric properties of PZT ceramics. At the same time, the dielectric constant with different Zr/Ti at 1 kHz is investigated. The dielectric con-stant reaches a maximum 534 when x =0. 48, and dielectric loss value is 0. 04.
作者
李瑛娟
宋群玲
张文莉
张金梁
滕瑜
蔡川雄
LIYingjuan SONG Qunling ZHANG Wenli ZHANG Jinliang TENGYu CAI Chuangxiong(Faculty of Metallurgy & Materials Engineering, Kunming Metallurgy College, Kunming 650033, Chin)
出处
《昆明冶金高等专科学校学报》
CAS
2017年第1期1-5,12,共6页
Journal of Kunming Metallurgy College
基金
云南省应用基础研究青年项目:稀土掺杂PZT压电陶瓷制备工艺及性能研究(2016FD065)
昆明冶金高等专科学校青年基金:稀土掺杂PZT压电陶瓷制备工艺及性能研究(2015XJQN002)
关键词
PZT陶瓷
固相烧结
微观结构
介电性能
PZT ceramics
solid phase sintering
microstructure
dielectric performance