期刊文献+

基于数据库的收缩型航迹聚类模型仿真研究

Deflating Track Clustering Model Simulation Based on Database Research
下载PDF
导出
摘要 针对传统聚类算法只能选取少量数据源进行仿真分析,得到的聚类效果不能真实体现数据流的宏观特征的问题,考虑了海量航迹数据中的离群点检测以及离群点剔除,提出一种新的基于数据库的收缩型航迹聚类仿真模型,将三维空间网格化,建立K-means聚类和层次聚类双重交互算法,对网格中的离群点进行识别并剔除。解决了航迹聚类中的关键技术问题。通过对西北地区3 G海量二次雷达数据的聚类仿真分析,使航迹聚类仿真的耗时从h级降低至s级,并且得到的航迹分布特征清晰,验证了新模型对于海量数据宏观特征提取具有可行性和优越性,模型和算法对全国二次雷达航迹数据仿真具有借鉴意义。 In view of the traditional clustering algorithm can only choose a small amount of data source to go on simulation analysis, the clustering effect cannot really reflect the data flow of macroscopic character-istics of the problem. In this paper, considering the vast track detecting outliers in the data and eliminate outliers,put forward a new simulation model based on database of deflating track clustering, the three - di-mensional space grids,the establishment of K means clustering and hierarchical clustering algorithm, double interaction to identify and eliminate outliers in grid, Solve the key technical problems in the track is clustering. The clustering of simulation analysis to the northwest of 3 G huge amounts of secondary radar data, make track clustering simulation time consuming levels from hours reduced to seconds, and the track distribution characteristics are clear,macro feature extraction for huge amounts of data to verify the new model has the feasibility and superiority, this model and algorithm have the significance of reference to the secondary radar track data simulation.
作者 彭勃
出处 《航空计算技术》 2017年第2期45-48,共4页 Aeronautical Computing Technique
基金 国家自然科学基金委员会与中国民用航空局联合项目资助(U1633124) 民航局科技创新引导项目资助(20150231)
关键词 数据库 航迹聚类 收缩型航迹聚类模型 离群点 database track clustering deflating clustering model outliers
  • 相关文献

参考文献4

二级参考文献45

  • 1吴丹,冯新喜.多雷达多目标航迹起始算法研究[J].空军工程大学学报(自然科学版),2006,7(1):16-19. 被引量:11
  • 2杨新湦,丁松滨,赵磊,冯学伟.宁波栎社机场进离场程序的优化[J].中国民航大学学报,2007,25(3):8-12. 被引量:5
  • 3J L Krolik, R H Anderson. Maximum likelihood coordinate registration for over-the-horizon radar [J]. IEEE Transactions on Signal Processing (S1053-587X), 1997, 45(4): 945-959.
  • 4D J Percival, K A B White. Multipath track fusion for over-the- horizon radar [J]. Signal and Data Processing of Small Targets, San Diego, CA, United States (S0277-786X), 1997, 3163: 363-374.
  • 5M Mohandes, R E Bogner, A Bouzerdoum. Hierarchical clustering for OTHR track fusion [C]// Proceedings of the Australian Data Fusion Symposium, Adelaide, Aust, 1996. Adelaide, Australia: IEEE, 1996: 90-93.
  • 6J Zhu, R E Bogner, A Bouzerdoum, et al. Application of neural networks to track association in over the horizon radar [J]. Sensor Fusion and Aerospace Applications II, Orlando, FL, USA, (S0277- 786X), 1994, 2233: 224-235.
  • 7S L Chiu. Fuzzy model identification based on cluster estimation [J]. Journal of Intelligent and Fuzzy Systems (S1064-1246), 1994, 2(3): 267-278.
  • 8张枸.FCM算法初始化方法研究[D].重庆:西南大学,2006.
  • 9Han Jiawei.数据挖掘概念与技术[M].北京:机械工业出版社,2008.
  • 10Sambasivam S,Theodosopoulos N.Advanced Data Clustering Methods of Mining Web Documents[J].Issues in Informing Science and Information Technology,2006,3:563-579.

共引文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部