期刊文献+

FastRanDSac——一种高效的误匹配检测算法

FastRanDSac——a fast mismatching elimination algorithm
下载PDF
导出
摘要 图像之间存在光照变化、旋转、仿射变换,使得局部特征匹配后,误匹配无法避免.在正确匹配过半的前提下,提出一种简化的误匹配去除算法FastRanDSac,用于在极短时间内解决图像匹配对之间误匹配点的问题.初步实验表明,在平移、旋转、尺度缩放、视角以及光照变化的图像中,FastRanDSac能保存近100%的正确匹配对,而运行速度与RANSAC相比有大幅度的提高. Mismatching always exists after matching with local features due to the influences of illumi-nation change, rotation,as well as affine transformation. This work focuses on improving the efficiency of mismatching elimination providing more than half of matching - pairs are correct. A fast random double sample consensus algorithm,called FastRanDSac,is proposed to eliminate the mismatching in a very short time. The power of the methods is that it can keep most correct matching-points while re-moves all the mismatching-points,and greatly improves the efficiency against RANSAC.
作者 文吉成 吴丽君 陈金伙 林培杰 程树英 WEN Jicheng WU Lijun CHEN Jinhuo LIN Peijie CHENG Shuying(Institute of Micro-Nano Devices and Solar Cells,College of Physics and Information Engineering,Fuzhou University,Fuzhou,Fujian 350116,China)
出处 《福州大学学报(自然科学版)》 CAS 北大核心 2017年第3期336-341,共6页 Journal of Fuzhou University(Natural Science Edition)
基金 国家自然科学基金资助项目(51508105 61601127) 教育部留学归国人员科研启动经费资助项目(LXKQ201504) 福建省自然科学基金资助项目(2015J05124) 福建省科技厅高校产学合作资助项目(206H6012) 福建省科技厅工业引导性重点资助项目(2015H0021) 福建省经信委省级技术创新重点资助项目(830020 83016006) 福州大学贵重仪器设备开放测试基金资助项目(2016T042) 福建省教育厅产学研资助项目(JA14038)
关键词 随机抽样一致算法 误匹配去除 两次随机模型计算 反向投影 Random sample consensus mismatching elimination double random calculations back projection
  • 相关文献

参考文献4

二级参考文献50

  • 1Harris C.Stephens M.A combined corner and edge detector[A].Proc.of The Fourth Alvey Vision Conference[C],Manchestsr,UK,1988:147-151
  • 2Tomasi C,Kanade T.Detection and Tracking of Point Features[R].Carnegie Mellon University Technical Report CMU-CS-91-132,Pittsburgh,USA,Apr 1991
  • 3Lowe D G.Object recognition from local scale-invariant features[A].International Conference on Computer Vision[C],Corfu,Greece,Sep 1999:1150-1157
  • 4Lowe D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110
  • 5Mikolajczyk K,Schmid C.Scale & affine invariant interest point detectors[J].International Journal of Computer Vision,2004,60(1):63-86
  • 6Mikolajczyk K,et al.Local features for object class recognition[A].Proc.ICCV'05[C],Beijing,China,2005,Volume 2:1792-1799
  • 7Ke Y,Sukthankar R.PCA-SIFT:a more distinctive representation for local image descriptors[A].Proc.Conf.Computer Vision and Pattern Recognition[C],2004:511-517
  • 8Ledwich L,Williams S.Reduced SIFT features for image retrieval and indoor localisation[A].Australasian Conference on Robotics and Automation[C],Canberra,Australasian,2004
  • 9Delponte E,et al.SVD-matching using SIFT features[A].Proceedings of the International Conference on Vision,Video and Graphics[C],Edinburgh,UK,July 2005:125-132
  • 10Brown M, Lowe D G. Recognizing panoramas[C] ff Proceedings of the 9th International Conference onComputer Vision ( ICCV03). Nice, France.. IEEE, 2003 .. 1218 - 1225.

共引文献130

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部