期刊文献+

Clifford代数空间上的三维颅部感兴趣区配准

3D Cranium Registration Based on Clifford Algebra and ROI
下载PDF
导出
摘要 针对3D颅部医学图像配准中存在的配准精度不高、运算复杂、配准效率低等问题,在创新性地圈定了感兴趣配准区域的基础上,提出了一种基于Clifford代数的全新的几何特征轴构造方法。起初从参考模态与浮动模态中依次提取特征点,通过该特征点实现配准感兴趣区(ROI)圈定;其次利用感兴趣区的点云数据集到其质心的距离测度构造几何特征轴,并计算相应的旋转算子完成浮动模态相对于参考模态的高效、高精度配准。这样的配准方式有效地避免了多模态图像成像时配准区域非完全匹配导致的误差,并减少待处理的数据量,同时消除了无效配准区域产生的局部最优点的影响,进而降低了配准的误差。实验表明,感兴趣区处理后的待配准图像,经新算法仿真配准,能够精确地定位组织器官的三维位置,执行效率高且配准误差较小,是一种有效的3D颅部医学图像配准方法。 Aimed at the disadvantages of the traditional method for 3D skull medical images registration, such as low precision, complex operation and inefficiency, the region of interest for registration innovatively is delineated and a new method for constructing geometric feature axis is proposed based on Clifford algebra. Firstly, the feature points, which realize the delineation of region of interest ( ROI) , are extracted in turn from the reference mode and floating mode. Then the geometric feature axes are structured by using the distance measure from the point cloud data sets of ROI to their barycenter. And the corresponding rotation operators are calculated to complete the high- efficient and high- accurate registration of the floating mode respect to the reference mode. This method can effectively avoid the error caused by the non-matching registration area when the multi-modality is imaging. And it reduces the amount of data to be processed. At the same time,the effect of local optimal point in the invalid registration region is eliminated, and the registration error is reduced. Experiment shows that the simulation registration by new algorithm can accurately locate the three-dimensional position of tissue organ aiming at the images to be registered dealt with ROI. It,s an effective registration method for 3D skull medical images with higher execution efficiency and minor registration error.
出处 《科学技术与工程》 北大核心 2017年第11期68-73,共6页 Science Technology and Engineering
基金 国家自然科学基金(61273024 61305031) 江苏省自然科学基金(BY2016053-11) 江苏省"333"高层次人才培养工程(BRA2015366) 江苏省优势学科(PAPD)资助
关键词 3D 医学图像配准 CLIFFORD 代数 几何特征轴 感兴趣区域 3D medical image registration Clifford algebra geometric feature axis ROI
  • 相关文献

参考文献9

二级参考文献104

  • 1李洪波.共形几何代数——几何代数的新理论和计算框架[J].计算机辅助设计与图形学学报,2005,17(11):2383-2393. 被引量:36
  • 2彭晓明,陈武凡,马茜.基于B样条的快速弹性图像配准方法[J].计算机工程与应用,2006,42(11):186-189. 被引量:11
  • 3张红颖,张加万,孙济洲.改进Demons算法的非刚性医学图像配准[J].光学精密工程,2007,15(1):145-150. 被引量:22
  • 4张红颖,张加万,孙济洲,杨甲东.基于层次B样条的医学图像弹性配准方法[J].天津大学学报,2007,40(1):35-40. 被引量:8
  • 5Wang MY, Maurer CR, Fitzpatrick JM, et al. An automatic technique for finding and localizing externally attached markers in CT and MRI volume images of the head[J]. IEEE Trans Biomedical Eng, 1996,43(6):627-637.
  • 6Fitzpatrick JM, West J, et al. Predicting error in rigid-body, point-based registration[J]. IEEE Trans Med Imaging, 1998,17(5) :447-461.
  • 7Eggert DW, Lorusso A, Fisher RB. Estimating 3-D rigid body transformations: a comparison for four major algorithms. Mach Vision Appl, 1997,9 (5) : 272-290.
  • 8Lehmann T.M., Claudia Gnner, Klaus Spitzer. 医学图像处理中的插值方法[J].IEEE医学图像会报,1999,18(11):1049-1075.
  • 9J.P.W.Pluim,J.B.A.Maintz,M.AViergever.基于梯度信息和最大互信息的图像配准[J].IEEE医学图像会报,2000,8(19):809-814.
  • 10Mark Jenkinson,Stephen Smith.一种针对脑图像的鲁棒仿射配准的全局最优方法[J].医学图像分析,2001,5:143-156.

共引文献127

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部