摘要
利用正整数有序分拆的共轭分拆,分别给出了偶数2k、奇数2k+1和正整数n的不含分部量2的自反的有序分拆数的递推关系式的组合双射证明.此外,还给出了NAGI关于正整数n不含分部量2的有序分拆数的一个恒等式的不同组合双射.
Using the conjugate of compositions,we present combinatorial bijective proofs of the recurrence relation of the self-inverse compositions without 2's of even 2k,2's of odd 2k+1,and without 2's of positive integer n,respectively.In addition,we also obtain the combinatorial bijection of an identity which was obtained by MUNAGI relating to the number of the compositions without 2's of positive integer n.The methods used in this paper are different from the proofs of MUNAGI.
出处
《浙江大学学报(理学版)》
CAS
CSCD
北大核心
2017年第3期261-265,共5页
Journal of Zhejiang University(Science Edition)
基金
国家自然科学基金资助项目(11461020)
关键词
正整数的有序分拆
共轭分拆
自反的有序分拆
组合双射
关系式
compositions of positive integer
the conjugate of compositions
the self-inverse compositions
combinatorial bijection
relation