期刊文献+

射频磁控溅射法制备Cu_2SnS_3薄膜结构和光学特性的研究

Synthesis and Optical Properties of Magnetron Sputtered Cu_2SnS_3 Thin Films
下载PDF
导出
摘要 利用射频磁控溅射法并经快速退火处理制备Cu_2SnS_3薄膜,研究了使用SnS_2、Cu_2S混合靶(摩尔比分别为1∶1、1∶1.5、1∶2)及在不同溅射功率(40和80W)条件下所制备Cu_2SnS_3薄膜的晶体结构、物相组成、化学组分、表面形貌和光学特性。结果表明:混合靶的SnS_2、Cu_2S最佳摩尔比为1∶1.5,利用该靶所制备薄膜均结晶;在溅射功率为80 W条件下,所制备薄膜结晶质量和择优取向度高,应变最小,Cu∶Sn∶S摩尔比为1.89∶1∶2.77,平均颗粒直径和平均粗糙度分别为332和0.742 nm,吸收系数达到10~4cm^(-1),禁带宽度为1.32 eV。制备了n-Si/p-CTS异质结器件,器件具有良好的整流特性和光电流响应特性。 The Cu2SnS3( CTS) thin films were deposited by RF magnetron puttering of a lab-made SnS2/Cu2S target. The impact of the molar ratio of SnS2/Cu2S powders and sputtering power on the microstructures,stoichiometric ratio and optical properties of the CTS coating was investigated with X-ray diffraction,energy dispersive spectroscopy,atomic force microscopy,Raman spectroscopy and UV/VIS/NIR spectroscopy. The preliminary results show that high quality CTS coatings were deposited under the optimized conditions. To be specific,grown at a molar ratio of 1∶ 1. 5 and a sputtering power of 80 W,the polycrystalline tetragonal-phase CTS coatings consisted of 213 preferentially orientated grains with average grain-size of 332 nm,surface roughness of 0. 742 nm and stoichiometric ratio of 1. 89( Cu) ∶ 1( Sn) ∶ 2. 77( S). The absorption coefficient and band-gap were 10^4cm^-1 and 1. 32 eV respectively. Moreover,the n-Si/p-CTS hetero-junction,made of the low strain CTS coatings,displayed good properties of rectifying and photocurrent response.
出处 《真空科学与技术学报》 CSCD 北大核心 2017年第4期400-408,共9页 Chinese Journal of Vacuum Science and Technology
基金 国家自然科学基金(No.51272061)资助项目
关键词 Cu2SnS3薄膜 射频磁控溅射 快速退火 晶体结构 光学特性 Cu2SnS3 thin film RF magnetron sputtering Rapid thermal annealing Crystalline structure Optical properties
  • 相关文献

参考文献4

二级参考文献71

  • 1葛启函,邓宏,陈航,徐自强.不同掺Al^(3+)浓度的ZnO:Al薄膜性能研究[J].电子科技大学学报,2006,35(2):253-256. 被引量:8
  • 2詹勇军,吴卫东,王锋,白黎,唐永建,谌家军.NaF薄膜的脉冲激光沉积法制备与结构研究[J].强激光与粒子束,2007,19(4):633-637. 被引量:3
  • 3田民波,李正操.薄膜技术与薄膜材料[M].北京:清华大学出版社,2011,155-156.
  • 4B. Li, Y. Xie, J.X. Huang, Y.T. Qian, ,l. Sol. Stat. Chem. 153 (2000) 170-173.
  • 5X.Y. Chen, X. Wang, C.H. An, J.W. Liu, Y.T. Qian, J. Cryst. Growth 256 (2003) 368-376.
  • 6B.H. Qu, M. Zhang, D. Lei, Y.P. Zeng, Y.J. Chen Nanoscale 3 (2011) 3646-3651.
  • 7M. Onoda, X.A. Chen, A. Sato, H. Wada, Mater. Res. Bull. 35 (20001 1563-1570.
  • 8M. Bouaziz, J. Ouerfelli, S.K. Srivastava, J.C. Bem6de, M. Amlouk, Vacuum 85 (2011 ) 783-786.
  • 9M. Bouaziz, M. Amlouk, S. Belgacem, Thin Solid Films 517 (2009) 2527-2530.
  • 10B.H. Qu, H.X. Li, M. Zhang, L. Mei. L.B. Chen, Y.G. Wang, Nanoscale 3 (2011 ) 4389-4393.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部